H. Kawabata et al. / Tetrahedron Letters 47 (2006) 1571–1574
1573
Commun. 2002, 124; (c) Lai, T.-S.; Kwong, H.-L.;
Che, C.-M.; Peng, S.-M. Chem. Commun. 1997, 2373; (d)
Noda, K.; Hosoya, N.; Irie, R.; Ito, Y.; Katsuki, T. Synlett
1993, 469; (e) Nishikori, H.; Katsuki, T. Tetrahedron Lett.
1996, 37, 9245; (f) Minakata, S.; Ando, T.; Nishimura, M.;
Ryu, I.; Komatsu, K. Angew. Chem., Int. Ed. 1998, 37,
3392; (g) Nishimura, M.; Minakata, S.; Takahashi, T.;
Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2002, 67,
2101; (h) Ho, C.-H.; Lau, T.-C.; Kwong, H.-L.; Wong, W.-
T. J. Chem. Soc., Dalton Trans. 1999, 2411; (i) Evans, D.
A.; Woerpel, K. A.; Hinman, N. M.; Faul, M. M. J. Am.
Chem. Soc. 1991, 113, 726; (j) Evans, D. A.; Faul, M. M.;
Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am.
Chem. Soc. 1993, 115, 5328; (k) So¨dergren, M. J.; Alonso,
D. A.; Andersson, P. G. Tetrahedron: Asymmetry 1997, 8,
3563; (l) Tayler, S.; Gullick, J.; Mcmorn, P.; Bethell, D.;
Page, P. C. B.; Hanock, F. E.; King, F.; Hutichings, G. J. J.
Chem. Soc., Perkin. Trans. 2 2001, 1714; (m) Gullick, J.;
Taylor, S.; Ryan, D.; McMorn, P.; Coogan, M.; Bethell,
D.; Page, P. C. B.; Hancock, F. E.; King, F.; Hutchings, G.
J. Chem. Commun. 2003, 2808; (n) Taylor, S.; Gullick, J.;
Galea, N.; McMorn, P.; Bethell, D.; Page, P. C. B.;
Hancock, F. E.; King, F.; Willock, D. J.; Hutchings, G. J.
Top. Catal. 2003, 25, 81; (o) Taylor, S.; Gullick, J.;
McMorn, P.; Bethell, D.; Page, P. C. B.; Hancock, F. E.;
King, F.; Hutchings, G. J. Top. Catal. 2003, 24, 43; (p) Xu,
J.; Ma, L.; Jiao, P. Chem. Commun. 2004, 1616; (q) Ryan,
D.; McMorn, P.; Bethell, D.; Hutchings, G. J. Org. Biomol.
Chem. 2004, 2, 3566; (r) Krumper, J. R.; Gerisch, M.; Suh,
J. M.; Bergman, R. G.; Tilley, T. D. J. Org. Chem. 2003, 68,
9705; (s) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am.
Chem. Soc. 1993, 115, 5326; (t) Sanders, C. J.; Gillespie, K.
M.; Bell, D.; Scott, P. J. Am. Chem. Soc. 2000, 122, 7132;
(u) Gillespie, K. M.; Crust, E. J.; Deeth, R. J.; Scott, P.
Chem. Commun. 2001, 785; (v) Gillespie, K. M.; Sanders,
C. J.; O’Shaughnessy, P.; Westmoreland, I.; Thickitt, C. P.;
Scott, P. J. Org. Chem. 2002, 67, 3450; (w) Shi, M.; Wang,
C.-J.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12,
3105; (x) Shi, M.; Wang, C.-H. Chirality 2002, 14, 412; (y)
Suga, H.; Kakehi, A.; Ito, S.; Ibata, T.; Fudo, T.;
Watanabe, Y.; Kinoshita, Y. Bull. Chem. Soc. Jpn. 2003,
76, 189; (z) Cho, D.-J.; Jeon, S.-J.; Kim, H.-S.; Cho, C.-S.;
Shim, S.-C.; Kim, T.-J. Tetrahedron: Asymmetry 1999, 10,
3833.
with o-Ns azide. It was found that this azide was less
reactive and the reaction with it was somewhat less
selective than that with p-Ns azide (entries 6–8).
Subsequently to this, we examined aziridination using
SES azide with expectation that the reaction with this
azide would show different stereochemistry from that
with o- or p-Ns azide, because alkyl- and aryl-sulfonyl
groups were considered to interact with the salen ligand
differently from each other.11 Fortunately, complex 3
was found to catalyze aziridination using SES azide as
efficiently as the reaction with o- or p-Ns azide. Further-
more, enantioselectivity was improved to some extent,
as compared with the reaction with o- or p-Ns azide
(entries 9–11).12 It should be noted that complexes 1
and 2 were less efficient also for the aziridination with
SES azide: reactions of styrene in the presence of
1 mol % of complex 1 or 2 at room temperature for
12 h afforded the corresponding SES-protected aziridine
in 10% yield (TON = 10) with 89% ee or in 67% yield
(TON = 67) with 88% ee, respectively. The reactions
of other terminal conjugated olefins with SES azide also
proceeded with high enantioselectivity (entries 12 and
13). The aziridination of 1-octene was slow even at ele-
vated temperature, but it showed good enantioselectivity
of 77% ee (entry 14). The reaction of indene proceeded
with excellent selectivity, albeit with moderate TON (en-
try 15). The N-SES group can be deprotected under mild
conditions and it has been reported that chiral N-SES-
protecting aziridines can be converted to the corre-
sponding aziridines without diminishing their enantio-
meric purity.3g
In conclusion, we were able to achieve highly enantio-
selective aziridination using 2-(trimethylsilyl)ethanesul-
fonyl azide as the nitrene precursor with reasonably
designed Ru(salen)(CO) complex 3 as catalyst. Since the
N-SES group can be readily removed, the present reaction
provides a useful method not only for synthesizing
N-sulfonylated aziridines but also for preparing non-N-
protected ones under mild conditions.
4. For aziridination: Kwart, H.; Khan, A. A. J. Am. Chem.
Soc. 1967, 89, 1951; For sulfimidation: (a) Bach, T.;
Ko¨rber, C. Eur. J. Org. Chem. 1999, 1033; (b) Bach, T.;
Ko¨rber, C. J. Org. Chem. 2000, 65, 2358; (c) Okamura, H.;
Bolm, C. Org. Lett. 2004, 6, 1305; For C–H amination: (d)
Cenini, S.; Tollari, S.; Penoni, A.; Cereda, C. J. Mol.
Catal. A: Chem. 1999, 137, 135; (e) Ragaini, F.; Penoni,
A.; Gallo, E.; Tollari, S.; Gotti, C. L.; Lapadula, M.;
Mangioni, E.; Cenini, S. Chem. Eur. J. 2003, 9, 249.
5. (a) Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc.
Acknowledgments
H.K. is grateful to the Japan Society for the Promotion
of Science (JSPS) Research Fellowships for Young
Scientists.
1995, 117, 5889; (b) Muller, P.; Baud, C.; Na¨geli, I. J.
¨
References and notes
Phys. Org. Chem. 1998, 11, 597; (c) Muller, P.; Baud, C.;
¨
Jacquier, Y. Can. J. Chem. 1998, 76, 738.
6. (a) Murakami, M.; Uchida, T.; Katsuki, T. Tetrahedron
Lett. 2001, 42, 7071; (b) Murakami, M.; Uchida, T.; Saito,
B.; Katsuki, T. Chirality 2003, 15, 116; (c) Omura, K.;
Murakami, M.; Uchida, T.; Irie, R.; Katsuki, T. Chem.
Lett. 2003, 32, 354.
1. For a recent review, see: Hu, X. E. Tetrahedron 2004, 60,
2701.
2. For reviews, see: (a) Jacobsen, E. N. In Comprehensive
Asymmetric Catalysis II; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: Berlin, 1999; Chapter 17, p
607; (b) Katsuki, T. In Comprehensive Coordination
Chemistry II; McCleverty, J., Ed.; Elsevier Science Ltd.:
7. Uchida, T.; Tamura, Y.; Ohba, M.; Katsuki, T. Tetra-
hedron Lett. 2003, 44, 7965.
Oxford, 2003; Vol. 9, Chapter 9.4, p 207; (c) Muller, P.;
¨
Fruit, C. Chem. Rev. 2003, 103, 2905; (d) Tanner, D.
Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
8. Omura, K.; Uchida, T.; Irie, R.; Katsuki, T. Chem.
Commun. 2004, 2060.
9. (a) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron
Lett. 1995, 36, 6373; (b) Fukuyama, T.; Cheung, M.; Jow,
C.-K.; Hidai, Y.; Kan, T. Tetrahedron Lett. 1997, 38, 5831.
3. (a) Kohmura, Y.; Katsuki, T. Tetrahedron Lett. 2001, 42,
3339; (b) Liang, J.-L.; Yu, X.-Q.; Che, C.-M. Chem.