Please d oC hn eo mt aC do mj u ms t margins
Page 4 of 5
COMMUNICATION
b). The similar level of colocalization was observed for ER
targeting probe, BOD-Cl (Figure 4d), where we determined the
Pearson’s correlation coefficients were 0.86 for B16F10 cells,
Journal Name
6
7
8
9
1
Chem. 2016, 223, 496-500.
4
DOI: 10.1039/D0CC06313D
. D. M. Townsend, K. D. Tew and H. Tapiero, Biomed.
Pharmacother., 2003, 57, 145-155.
. J. M. Estrela, A. Ortega and E. Obrador, Crit. Rev. Clin. Lab. Sci.,
2006, 43, 143-181.
. X. Yang, Y. Guo and R. M. Strongin, Angew. Chem., Int. Ed.,
0
.86 for A375 cells, and 0.89 for HEK-A. In the contrast, when
using probe, BOD-JQ, without any targeting agents, the
Pearson’s correlation coefficients were found as poor as 0.21 for
both mitochondria and ER in B16F10, a375 and HEK-A cells
2
011, 50, 10690-10693.
0. S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg,
R. B. D'Agostino, P. W. F. Wilson and P. A. Wolf, N. Engl. J.
Med., 2002, 346, 476-483.
(supplementary Figure S63).
We have successively demonstrated that BOD-JQ can reflect
the changes of the intracellular biothiol concentrations. The 11. L.-Y. Niu, Y.-S. Guan, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and Q.-Z.
Yang, J. Am. Chem. Soc., 2012, 134, 18928-18931.
2. L. Yi, H. Li, L. Sun, L. Liu, C. Zhang and Z. Xi, Angew. Chem., Int.
Ed., 2009, 48, 4034-4037.
3. H. Jiang and H. Ju, Anal. Chem., 2007, 79, 6690-6696.
4. K. Amarnath, V. Amarnath, K. Amarnath, H. L. Valentine and
W. M. Valentine, Talanta, 2003, 60, 1229-1238.
5. F. Wang, L. Zhou, C. Zhao, R. Wang, Q. Fei, S. Luo, Z. Guo, H.
Tian and W.-H. Zhu, Chem. Sci., 2015, 6, 2584-2589.
6. T. Matsumoto, Y. Urano, T. Shoda, H. Kojima and T. Nagano,
Org. Lett., 2007, 9, 3375-3377.
cellular biothiol level was manipulated by the addition of NEM
and the cell-permeable glutathione monoethyl ester (a GSH
precursor). Initially, we incubated BOD-JQ (2 μM) with B16F10
cells for 30 min. After the addition of NEM (500 μM), the
fluorescence intensity of BOD-JQ-SH decreased rapidly and
reached a plateau within 30s. This was due to the disassociation
of BOD-JQ and the re-formation of BOD-JQ. We observed that
the fluorescence intensity was unchanged without further
treatments. After 5 min, GSH monoethyl ester (5 mM) was added
and the fluorescence intensity was gradually restored, indicating
the detection of intracellular biothiols changes in real time by
BOD-JQ (Supplementary Figure S64 and Figure 3d).
In summary, we have rationally designed and synthesized a
highly sensitive BODIPY-based fluorescence probe which
exhibited tremendous fast reaction kinetics with thiols, thus it
enabled the real-time monitoring of biothiols concentrations in
living cells. We demonstrated the probe for quantifying
intracellular GSH concentration by measuring GSH levels in
various cell lines and by successfully monitoring the GSH
dynamics in living cells. The results presented here support our
view that these probes are valuable tools for the investigation of
how thiols dynamics are regulated in a physiological context, due
to their capability for real-time quantification of biothiols with
high temporal resolution. We envision that these new probes will
enable opportunities to study biothiols dynamics and
transportation and expand our understanding of the physiological
1
1
1
1
1
1
1
1
2
2
2
2
2
7. B. K. McMahon and T. Gunnlaugsson, J. Am. Chem. Soc., 2012,
134, 10725-10728.
8. X. Xie, M. Li, F. Tang, Y. Li, L. Zhang, X. Jiao, X. Wang and B.
Tang, Anal. Chem., 2017, 89, 3015-3020.
9. Meister, A.; Anderson, M. E. Annu. Rev. Biochem. 1983, 52,
7
11– 760
0. Z. Lu, Y. Lu, C. Fan, X. Sun, M. Zhang and Y. Lu, J. Mater. Chem.
B, 2018, 6, 8221-8227.
1. Z. Cai, X. Liu, X. Wang, Z. Chen, Z. Song, Y. Xu, H. Tao, Y. Li, R.
Chen, L. Guo and F. Fu, Anal. Chim. Acta, 2019, 1091, 127-134.
2. K. Umezawa, M. Yoshida, M. Kamiya, T. Yamasoba and Y.
Urano, Nat. Chem., 2017, 9, 279-286.
3. J. Zhang, N. Wang, X. Ji, Y. Tao, J. Wang and W. Zhao, Chem. -
Eur. J., 2020, 26, 4172-4192.
4. X. Jiang, J. Chen, A. Bajić, C. Zhang, X. Song, S. L. Carroll, Z.-L.
Cai, M. Tang, M. Xue, N. Cheng, C. P. Schaaf, F. Li, K. R.
MacKenzie, A. C. M. Ferreon, F. Xia, M. C. Wang, M. Maletić-
Savatić and J. Wang, Nat. Commun., 2017, 8, 16087.
5. E. H. Krenske, R. C. Petter and K. N. Houk, J. Org. Chem., 2016,
81, 11726-11733.
6. H. Hino, M. Kamiya, K. Kitano, K. Mizuno, S. Tanaka, N.
Nishiyama, K. Kataoka, Y. Urano and J. Nakajima, Transl.
Oncol., 2016, 9, 203-210.
2
2
and pathological roles of biothiols in living cells.
This work was completed with support by National Natural
Science Foundation of China (22071263), Hundred-Talent Program
2
2
7. Y. Urano, M. Sakabe, N. Kosaka, M. Ogawa, M. Mitsunaga, D.
Asanuma, M. Kamiya, M. R. Young, T. Nagano, P. L. Choyke
and H. Kobayashi, Sci. Transl. Med., 2011, 3, 110-119.
8. S.-Y. Lim, K.-H. Hong, D. I. Kim, H. Kwon and H.-J. Kim, J. Am.
Chem. Soc., 2014, 136, 7018-7025.
(Chinese Academy of Sciences) and Guangdong Natural Science
Foundation (2020A1515010994).
Conflicts of interest
There are no conflicts to declare
Notes and references
1
2
3
4
5
. J. Yin, Y. Kwon, D. Kim, D. Lee, G. Kim, Y. Hu, J.-H. Ryu and J.
Yoon, J. Am. Chem. Soc., 2014, 136, 5351-5358.
. B. Helbling, J. Von Overbeck and B. H. Lauterburg, Eur. J. Clin.
Invest., 1996, 26, 38-44.
. X.-F. Yang, Q. Huang, Y. Zhong, Z. Li, H. Li, M. Lowry, J. O.
Escobedo and R. M. Strongin, Chem. Sci., 2014, 5, 2177-2183.
. Y.-F. Kang, L.-Y. Niu and Q.-Z. Yang, Chin. Chem. Lett., 2019,
3
0, 1791-1798.
. Y. Yue, F. Huo, F. Cheng, X. Zhu, T. Mafireyi, R. M. Strongin and
C. Yin, Chem. Soc. Rev., 2019, 48, 4155-4177.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins