Organic & Biomolecular Chemistry
Paper
mined with a XT-4 melting-point apparatus without being cor-
rected. H NMR spectra were measured with a Bruker Ascend
(c) P.-W. Xu, J.-S. Yu, C. Chen, Z.-Y. Cao, F. Zhou and
J. Zhou, ACS Catal., 2019, 9, 1820–1882.
1
4
00 MHz spectrometer, and chemical shifts were reported in δ 2 For selected examples, see: (a) B. Yu, D.-Q. Yu and
(
ppm) units relative to tetramethylsilane (TMS) as an internal
H.-M. Liu, Eur. J. Med. Chem., 2015, 97, 673–698;
(b) M.-G. Hollingshead, M.-C. Alley, R.-F. Camalier,
B.-J. Abbott, J.-G. Mayo, L. Malspeis and M. R. Grever, Life
Sci., 1995, 57, 131–141; (c) N.-P. Novichikhina,
A.-A. Skoptsova, A.-S. Shestakov, A.-Yu. Potapov,
E.-A. Kosheleva, O.-A. Kozaderov, I.-V. Ledenyova,
N.-A. Podoplelova, M.-A. Panteleev and Kh.-S. Shikhaliev,
Russ. J. Org. Chem., 2020, 56, 1550–1556; (d) H. Rafatro,
D. Ramanitrahasimbola, P. Rasoanaivo, S. Ratsimamanga-
Urverg, A. Rakoto-Ratsimamanga and F. Frappier, Biochem.
Pharmacol., 2000, 59, 1053–1061.
1
3
standard. C NMR spectra were measured at 100 MHz with
the same Bruker Ascend 400 MHz spectrometer and chemical
shifts were reported in δ (ppm) units relative to tetramethyl-
silane and referenced to the solvent peak (CDCl , δ(C) =
7
patterns are described as singlet (s), doublet (d), triplet (t),
quartet (q), and multiplet (m). High-resolution mass spectra
were obtained with an Agilent 6520 Accurate-Mass-Q-TOF MS
system equipped with an electrospray ionization (ESI) source.
The enantiomeric excesses were determined by chiral HPLC
3
6
7.0 ppm and DMSO-d , δ(C) = 39.43 ppm). Proton coupling
analysis using an Agilent 1200 LC instrument with Daicel 3 M. E. Salvati, J. A. Balog and D. A. Pickering, et al., US Patent
Chiralpak IA, IB, IC or AD-H columns. Optical rotations were 0176324A1, 2004.
measured with a Krüss P8000 polarimeter at the indicated con- 4 For selected examples, see: (a) S. De, M. K. Das, S. Bhunia
centration with the units of grams per 100 mL at 20 °C using
sodium D light.
and A. Bisai, Org. Lett., 2015, 17, 5922–5925; (b) W.-G. He,
J.-D. Hu, P.-Y. Wang, L. Chen, K. Ji, S.-Y. Yang, Y. Li, Z.-L. Xie
and W.-Q. Xie, Angew. Chem., Int. Ed., 2018, 57, 3806–3809;
(c) H.-L. Zhang, X.-Z. Ma, H. Kang, L. Hong and R. Wang,
Chem. – Asian J., 2013, 8, 542–545; (d) M. Amat, C. Ramos,
M. Perez, E. Molins, P. Florindo, M.-M.-M. Santos and
J. Bosch, Chem. Commun., 2013, 49, 1954–1956; (e) X.-B. Xu,
J.-C. Liu, L. Lu, F.-R. Wang and B.-L. Yin, Chem. Commun.,
General procedure for the asymmetric Michael addition/
cyclization reaction for the synthesis of compounds 3
To a dried small bottle were added 2,3-dioxopyrrolidines 1
(0.1 mmol), 2-isothiocyanato-1-indanone 2 (0.12 mmol), and
squaramide catalyst C8 (5 mol%) in 2.0 mL of AcOEt at room
temperature. The reaction mixture was stirred for 15 h and the
progress of the reaction was monitored by TLC analysis (pet-
roleum ether/ethyl acetate = 1 : 1). After the completion of the
reaction, the crude product mixture was purified by flash
column chromatography on silica (petroleum ether/ethyl
acetate = 5 : 1–3 : 1) to afford the pure product 3. The racemic
standard of 3 was prepared using an achiral catalyst.
2
017, 53, 7796–7799; (f) Q. Wang, Y. Qu, Q. Xia, H.-J. Song,
H.-B. Song, Y.-X. Liu and Q.-M. Wang, Chem. – Eur. J., 2018,
4, 11283–11287; (g) E. Schendera, S. Lerch, T. V. Drathen,
L.-N. Unkel and M. Brasholz, Eur. J. Org. Chem., 2017, 3134–
138.
2
3
5
For selected examples, see: (a) P. R. Sebahar and
R. M. Williams, J. Am. Chem. Soc., 2000, 122, 5666–5667;
(
b) D. Zhang, S.-X. Dong, Q.-W. He, Y. Luo, Y. Liu, X.-H. Liu
and X.-M. Feng, Chem. Commun., 2020, 56, 12757–12760;
c) W.-L. Yang, Y.-Z. Liu, S. Luo, X.-X. Yu, J. S. Fossey and
W.-P. Deng, Chem. Commun., 2015, 51, 9212–9215;
d) L.-L. Wang, J.-F. Bai, L. Peng, L.-N. Jia, Y.-L. Guo,
X.-Y. Luo, X.-Y. Xu and L.-X. Wang, Chem. Commun., 2012,
8, 5175–5177; (e) D. Zhang, L.-L. Lin, J. Yang, X.-H. Liu and
X.-M. Feng, Angew. Chem., Int. Ed., 2018, 57, 12323–12327;
f) Y.-M. Cao, X.-X. Jiang, L.-P. Liu, F.-F. Shen, F.-T. Zhang
(
Conflicts of interest
(
There are no conflicts of interest to declare.
4
Acknowledgements
(
The authors are grateful for financial support from the
National Natural Science Foundation of China (grant number
and R. Wang, Angew. Chem., Int. Ed., 2011, 50, 9124–9127;
(g) M. Monecke and T. Lindel, Org. Lett., 2018, 20, 7969–
7972; (h) S. V. Zaytsev, K. L. Ivanov, D. A. Skvortsov,
S. I. Bezzubov, M. Y. Melnikov and E. M. Budynina, J. Org.
Chem., 2018, 83, 8695–8709.
2
1272024) and the Graduate Technology Innovation Project of
Beijing Institute of Technology (2019CX20043). We also thank
the Analysis & Testing Center of Beijing Institute of Technology
for the measurement of NMR, mass spectrometry, and X-ray 6 For selected reviews, see: (a) W.-Y. Han, J.-Q. Zhao, J. Zuo,
diffraction analysis.
X.-Y. Xu, X.-M. Zhang and W.-C. Yuan, Adv. Synth. Catal.,
015, 357, 3007–3031; (b) Y. Yang, X. Wang, X. Ye, B. Wang,
X. Bao and H. Wang, Org. Biomol. Chem., 2021, 19, 4610–
621; (c) A. Laviós, A. Sanz-Marco, C. Vila, G. Blay and
J. R. Pedro, Eur. J. Org. Chem., 2021, 2268–2284.
2
4
Notes and references
1
For selected reviews and examples, see: (a) R. Rios, Chem. 7 B.-L. Zhao and D.-M. Du, Org. Lett., 2018, 20, 3797–3800.
Soc. Rev., 2012, 41, 1060–1074; (b) L. K. Smithand and 8 CCDC 2081838† (for 3ja) contains the supplementary crys-
I. R. Baxendale, Org. Biomol. Chem., 2015, 13, 9907–9933; tallographic data for this paper.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 7181–7185 | 7185