Organic Letters
Letter
(3) (a) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron
Lett. 1980, 21, 3595−3598. (b) Hirao, T.; Masunaga, T.; Ohshiro, Y.;
Agawa, T. Synthesis 1981, 1981, 56−57. (c) Hirao, T.; Masunaga, T.;
Yamada, N.; Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55,
909−913. (d) Montchamp, J.-L.; Dumond, Y. R. J. Am. Chem. Soc.
2001, 123, 510−511. (e) Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett.
2008, 10, 4637−4640. (f) Deal, E. L.; Petit, C.; Montchamp, J.-L. Org.
Lett. 2011, 13, 3270−3273. (g) Bloomfield, A. J.; Herzon, S. B. Org.
Lett. 2012, 14, 4370−4373. (h) Xu, K.; Hu, H.; Yang, F.; Wu, Y. Eur.
J. Org. Chem. 2013, 2013, 319−325. (i) Xu, K.; Yang, F.; Zhang, G.;
Wu, Y. Green Chem. 2013, 15, 1055−1060. (j) Fu, W. C.; So, C. M.;
Kwong, F. Y. Org. Lett. 2015, 17, 5906−5909.
halide can be irradiated by light to generate the excited state,
which can form five-membered-ring transition state I, similar
to that in our previous work,8o via weak halogen−metal
bonding12 between the halogen and sodium of intermediate F
(path b). Subsequent “intramolecular” electron transfer from
the lone pair of phosphorus to the C−X bond generates aryl
radical B and sodium bromide, while phosphite F is
concurrently oxidized to form phosphonate radical H. Then
intermediate H is cross-coupled with aryl radical B to generate
product J.
In conclusion, we have reported a novel cross-coupling of
aryl halides with H-phosphonates under irradiation by light
without using any transition metal or external photosensitizer
reagents. Various aryl and heteroaryl halides were successfully
cross-coupled with diarylphosphine oxides, dialkyl phospho-
nates, or arylphosphonates. Various functional groups were
tolerated, including ester, methoxy, dimethoxy, alkyl, phenyl,
trifluoromethyl, and heterocyclic compounds. This method
provides a potentially greener pathway to synthesize
phosphorus-containing pharmaceuticals, agrochemicals, and
flame-resistant materials.
(4) (a) Zhang, H.; Zhang, X.-Y.; Dong, D.-Q.; Wang, Z.-L. RSC Adv.
2015, 5, 52824−52831. (b) Gelman, D.; Jiang, L.; Buchwald, S. L.
Org. Lett. 2003, 5, 2315−2318. (c) Huang, C.; Tang, X.; Fu, H.; Jiang,
Y.; Zhao, Y. J. Org. Chem. 2006, 71, 5020−5022. (d) Rao, H.; Jin, Y.;
Fu, H.; Jiang, Y.; Zhao, Y. Chem. - Eur. J. 2006, 12, 3636−3646.
(5) (a) Li, Y.-M.; Yang, S.-D. Synlett 2013, 24, 1739−1744.
(b) Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Org. Lett.
2011, 13, 3478−3481. (c) Zhao, Y.-L.; Wu, G.-J.; Li, Y.; Gao, L.-X.;
Han, F.-S. Chem. - Eur. J. 2012, 18, 9622−9627. (d) Łastawiecka, E.;
̌
Flis, A.; Stankevic, M.; Greluk, M.; Słowik, G.; Gac, W. Org. Chem.
Front. 2018, 5, 2079−2085.
(6) Xuan, J.; Zeng, T.-T.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Chem. -
Eur. J. 2015, 21, 4962−4965.
ASSOCIATED CONTENT
* Supporting Information
■
(7) (a) Shaikh, R. S.; Dusel, S. J. S.; Konig, B. ACS Catal. 2016, 6,
̈
̈
S
̈
8410−8414. (b) Ghosh, I.; Shaikh, R. S.; Konig, B. Angew. Chem., Int.
Ed. 2017, 56, 8544−8549.
The Supporting Information is available free of charge on the
(8) For a selected review, see: (a) Liu, W.; Li, C.-J. Synlett 2017, 28,
2714−2754. For selected examples, see: (b) Liu, W.; Chen, N.; Yang,
X.; Li, L.; Li, C.-J. Chem. Commun. 2016, 52, 13120−13123. (c) Liu,
W.; Liu, P.; Lv, L.; Li, C.-J. Angew. Chem., Int. Ed. 2018, 57, 13499−
13503. (d) Huang, H.-Y.; Cheng, L.; Liu, J.-J.; Wang, D.; Liu, L.; Li,
C.-J. J. Org. Chem. 2017, 82, 2656−2663. (e) Li, J.; Caiuby, C. A. D.;
Paixao, M. W.; Li, C.-J. Eur. J. Org. Chem. 2018, 2018, 2498−2503.
(f) Li, J.; Zhu, D.; Lv, L.; Li, C.-J. Chem. Sci. 2018, 9, 5781−5786.
(g) Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315−
14321. (h) Liu, W.; Li, L.; Li, C. J. Nat. Commun. 2015, 6, 6526.
(i) Liu, W.; Yang, X.; Gao, Y.; Li, C.-J. J. Am. Chem. Soc. 2017, 139,
8621−8627. (j) Liu, W.; Yang, X.; Zhou, Z.-Z.; Li, C.-J. Chem. 2017,
2, 688−702. (k) Li, L.; Liu, W.; Mu, X.; Mi, Z.; Li, C.-J. Nat. Protoc.
2016, 11, 1948−1954. (l) Li, L.; Mu, X.; Liu, W.; Wang, Y.; Mi, Z.; Li,
C.-J. J. Am. Chem. Soc. 2016, 138, 5809−5812. (m) Yang, X.; Liu, W.;
Li, L.; Wei, W.; Li, C.-J. Chem. - Eur. J. 2016, 22, 15252−15256.
(n) Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J. J. Am.
Chem. Soc. 2015, 137, 8328−8331. (o) Cao, D.; Yan, C.; Zhou, P.;
Zeng, H.; Li, C.-J. Chem. Commun. 2019, 55, 767−770.
Experimental procedures, additional experimental data,
and compound characterization data (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
(9) During the time of writing this article, a visible-light-promoted
transition-metal-free cross-coupling of heteroaryl halides with diary-
lphosphine oxides was reported. The substrates suffered from limited
scope of heteroaryl halides and diarylphosphine oxides. Aryl halide
substrates or dialkyl phosphonates were not successful under this
reaction system. See: Yuan, J.; To, W.-P.; Zhang, Z.-Y.; Yue, C.-D.;
Meng, S.; Chen, J.; Liu, Y.; Yu, G.-A.; Che, C.-M. Org. Lett. 2018, 20,
7816−7820.
(10) An iodide source was added to this reaction system for the
aromatic Finkelstein reaction. Upon UV irradiation, the aryl halides
(including Ar−Br and Ar−Cl) were exchanged for aryl iodide in situ
to increase the activity of the aryl halides. See refs 8k and 8n .
(11) For selected examples, see: (a) Yanagisawa, S.; Ueda, K.;
Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 4673−4676. (b) Sun, C.-
L.; Gu, Y.-F.; Wang, B.; Shi, Z.-J. Chem. - Eur. J. 2011, 17, 10844−
10847. (c) Shirakawa, E.; Itoh, K.-i.; Higashino, T.; Hayashi, T. J. Am.
Chem. Soc. 2010, 132, 15537−15539. (d) Roman, D. S.; Takahashi,
Y.; Charette, A. B. Org. Lett. 2011, 13, 3242−3245. (e) Nocera, G.;
Young, A.; Palumbo, F.; Emery, K. J.; Coulthard, G.; McGuire, T.;
Tuttle, T.; Murphy, J. A. J. Am. Chem. Soc. 2018, 140, 9751−9757.
(f) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.;
Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737−
ACKNOWLEDGMENTS
■
We thank the Recruitment Program of Global Experts (Short-
Term B to C.-J.L.), the Fundamental Research Funds for the
Central Universities (lzujbky-2018-62), the International Joint
Research Centre for Green Catalysis and Synthesis, Gansu
Provincial Sci. & Tech. Department (2016B01017,
18JR3RA284, and 18JR4RA003), and Lanzhou University for
support of our research. We also thank the Canada Research
Chair (Tier I) Foundation, the E.B. Eddy Endowment Fund,
the CFI, NSERC, and FQRNT (to C.-J.L). We thank Mr.
Dawei Cao in this group (Lanzhou University) for reproducing
the results presented for 3c, 3k, and 3s in Scheme 2 and 3ac in
Scheme 3.
REFERENCES
■
(1) Troev, K. D. Chemistry and Application of H-Phosphonates;
Elsevier: Amsterdam, 2006.
(2) For selected reviews, see: (a) Luo, K.; Yang, W.-C.; Wu, L. Asian
J. Org. Chem. 2017, 6, 350−367. (b) Schwan, A. L. Chem. Soc. Rev.
2004, 33, 218−224.
D
Org. Lett. XXXX, XXX, XXX−XXX