Organic Letters
Letter
ORCID
product release from the enzyme, which is dependent on the
movement of the isoprene chain into an exit groove.
The second observation is that the length of the carbon chain
appears to be more important than flexibility in regard to
GGTase-I substrate activity. Comparing compounds of 15
carbons in length, 39b (kGrel = 0.23; kFrel = 0.11) lacks the γ-
isoprene unit of 21 (kGrel = 0.24; kFrel = 0.11); however, both
analogues have very similar reactivity. Thus, the lack of flexibility
in the ω-isoprene of 21 seems not to be an important factor. The
similarity between these two compounds also indicates the γ-
isoprene is not required to produce substrate activity.
Moreover, when an analogue has two carbons between the α-
and β-isoprene units (i.e. y = 2), increasing the carbon chain
length from 13 to 15 carbons has a more pronounced effect on
GGTase-IactivityversusFTase(28vs39b). Increasingthelength
to16carbons(39c)hasa∼3-foldincreaseinkcat/KM forGGTase-
I substrate activity; however, this trend does not carry over to
FTase. Analogue 39c also reveals the γ-isoprene unit of GGPP is
not necessary for enzyme recognition but is desirable for higher
enzyme turnover. Adding a methylene unit between the
diphosphate moiety and the α-isoprene unit led to the
homoallylic analogue 32. Preliminary data suggests analogue 32
is an inhibitor of GGTase-I.
Thisstudyaddressestheeffectsofdecreasingorincreasingboth
flexibility and length of non-natural, frame-shifted isoprenoid
diphosphate analoges. Our results indicated that a key factor in
frame-shifted isoprenoid diphosphate substrate reactivity was the
chain length and the position of the β-isoprene unit (y = 2 vs y =
3). Further analysis would reveal if these analogues could be
selective substrates, meaning that although these analogues are
poor co-substrates with dansyl-GCVLL in our preliminary
GGTase-I assay they could potentially be great co-substrates
with other CaaX sequences.
Present Address
§(K.J.T.) Vanderbilt Center for Neuroscience Drug Discovery,
Vanderbilt University Medical Center, Nashville, TN 37232.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was funded by NIH Grants R01 CA78819 (R.A.G.),
P30 CA21328 (Purdue University Center of Cancer Research),
and GM40602 (C.A.F.). I would like to thank my postdoctoral
research advisor, Dr. Craig Lindsley (Vanderbilt University), for
his aid in publishing this article after the passing of a great scientist
and even greater man, my thesis advisor, Dr. Richard A. Gibbs
(Purdue University).
REFERENCES
■
(1) (a) Oldfield, E.; Lin, F. Y. Angew. Chem., Int. Ed. 2012, 51, 1124.
(b) Miller, D. J.; Allemann, R. K. Nat. Prod. Rep. 2012, 29, 60.
(2) Chang, M. C. Y.; Keasling, J. D. Nat. Chem. Biol. 2006, 2, 674.
(3) (a) The Enzymes: Molecular Machines Involved in Protein Transport
across Cellular Membranes, 1st ed.; Academic Press: San Diego, 2011.
(b) Bowman, S. M.; Free, S. J. BioEssays 2006, 28, 799.
(4) Davis, E. M.; Croteau, R. Top. Curr. Chem. 2000, 209, 53.
(5)Lauchli, R.;Rabe, K.S.;Kalbarczyk, K.Z.;Tata,A.;Heel, T.;Kitto,R.
Z.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 5571.
(6) (a) Temple, K. J.; Wright, E. N.; Fierke, C. A.; Gibbs, R. A. Bioorg.
Med. Chem. Lett. 2016, 26, 3499. (b) Temple, K. J.; Wright, E. N.; Fierke,
C. A.; Gibbs, R. A. Bioorg. Med. Chem. Lett. 2016, 26, 3503.
(7)Placzek, A. T.;Hougland, J. L.;Gibbs, R. A. Org. Lett. 2012, 14, 4038.
(8) Rand, C. L.; Vanhorn, D. E.; Moore, M. W.; Negishi, E. J. Org. Chem.
1981, 46, 4093.
We successfully generated a small library of novel frame-shifted
isoprenoid diphosphate analogues originally designed to probe
theisoprenoidbinding pockets ofGGTase-I andFTase; however,
these analogues and the synthetic routes described in this work
also provide researchers with unique non-natural isoprenoids to
further explore the limits of terpene cyclases. Terpene cyclases
catalyze the key cyclization step in the biosynthesis of the largest
class of natural products, terpenoids.17 Several non-natural
isoprenoids have been shown to serve as substrates for terpene
cyclases resulting in unique cyclic products.18 In a similar manner,
several of the frame-shifted analogues shown in Figure 1 could
potentially exhibit unusual interactions with terpene cyclases,
perhaps allowing future researchers to develop unique cyclic
terpenoid products.
(9) (a) Davisson, V. J.; Woodside, A. B.; Neal, T. R.; Stremler, K. E.;
Muehlbacher, M.; Poulter, C. D. J. Org. Chem. 1986, 51, 4768.
(b) Davisson, V. J.; Woodside, A. B.; Poulter, C. D. Methods Enzymol.
1985, 110, 130.
(10) (a) Kuwajima, I.; Doi, Y. Tetrahedron Lett. 1972, 13, 1163.
(b) Henriksen, B. S.; Anderson, J. L.; Hrycyna, C. A.; Gibbs, R. A. Bioorg.
Med. Chem. Lett. 2005, 15, 5080.
(11) Snyder, S. A.; Treitler, D. S. Angew. Chem., Int. Ed. 2009, 48, 7899.
(12) Rashidian, M.; Song, J. M.; Pricer, R. E.; Distefano, M. D. J. Am.
Chem. Soc. 2012, 134, 8455.
(13) Derguiniboumechal, F.; Linstrumelle, G. Tetrahedron Lett. 1976,
17, 3225.
(14) (a) Kobayashi, M.; Valente, L. F.; Negishi, E.; Patterson, W.;
Silveira, A., Jr. Synthesis 1980, 1980, 1034. (b) Couturier, M.; Dory, Y. L.;
Rouillard, F.; Deslongchamps, P. Tetrahedron 1998, 54, 1529.
(15) (a) Wenkert, E.; Ferreira, V. F.; Michelotti, E. L.; Tingoli, M. J. Org.
Chem. 1985, 50, 719. (b) Kocienski, P.; Dixon, N. J.; Wadman, S.
Tetrahedron Lett. 1988, 29, 2353. (c) Kocienski, P.; Wadman, S.; Cooper,
K. J. Org. Chem. 1989, 54, 1215.
ASSOCIATED CONTENT
■
S
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
(16)(a) Krzysiak, A. J.;Rawat, D. S.;Scott, S. A.;Pais, J. E.;Handley, M.;
Harrison, M. L.; Fierke, C. A.; Gibbs, R. A. ACS Chem. Biol. 2007, 2, 385.
(b) Krzysiak, A. J.; Scott, S. A.; Hicks, K. A.; Fierke, C. A.; Gibbs, R. A.
Bioorg. Med. Chem. Lett. 2007, 17, 5548.
(17) Gao, Y.; Honzatko, R. B.; Peters, R. J. Nat. Prod. Rep. 2012, 29,
1153.
(18) (a) Lauchli, R.; Rabe, K. S.; Kalbarczyk, K. Z.; Tata, A.; Heel, T.;
Kitto, R. Z.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 5571.
(b) Hammer, S. C.; Dominicus, J. M.; Syren, P.-O.; Nestl, B. M.; Hauer,
B. Tetrahedron 2012, 68, 7624. (c) Faraldos, J. A.; O’Maille, P. E.; Dellas,
N.;Noel, J. P.;Coates, R.M. J. Am.Chem. Soc. 2010,132,4281. (d)Miller,
D. J.;Yu, F. L.;Knight, D. W.;Allemann, R. K. Org. Biomol. Chem. 2009, 7,
962. (e) Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. 1991, 113, 4025.
Spectral data (1H NMR, 13C NMR, 31P NMR, LRMS,
HRMS) for all newly synthesized compounds; detailed
experimental procedures for the synthesis of 9, 16, 21, 28,
32, 39a−39c. Detailed protocols for determination of
analog reactivity parameters with FTase and/or GGTase-I
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX