3844
J. Ram ı´ rez, E. Fern a´ ndez / Tetrahedron Letters 48 (2007) 3841–3845
be significantly accelerated by unsaturated Pt(0) com-
plexes having donating phosphine ligands and to be
References and notes
2
3
slowed down in the presence of PPh added to
1. (a) Organofluorine Compounds in Medicinal Chemistry and
Biomedical Applications; Filler, R., Kobayashi, Y., Yagu-
polskii, L. M., Eds.; Elsevier: Amsterdam, 1993; (b)
Banks, R. E.; Smart, B. E.; Tatlow, J. C. In Organofluorine
Chemistry: Principles and Commercial Applications; Ple-
num Press: New York, 1994; (c) Fluorine Containing
Amino Acids: Synthesis and Properties; Kukhar, V. P.,
Soloshonok, V. A., Eds.; John Wiley and Sons: Chiches-
ter, 1995; (d) Biomedical Frontiers of Fluorine Chemistry;
Ojima, L., McCarthy, J. R., Welch, J. T., Eds.; American
Chemical Society: Washington DC, 1996.
3
2
4,25
Pt(PPh ) ,
thus suggesting that both the oxidative
3
4
addition and the phosphine dissociation have a rate-
determining role.
Despite the fact that other Pt(0) derivatives such as
2
4,26
Pt(PPh ) (C H ),
plexes,
mono(phosphine)platinum com-
3
2
3,25
2
4
2
15
Pt–N-heterocyclic carbene ligands
and
2
7
base-free platinum complexes have significantly im-
proved the activity and selectivity of the diborated prod-
uct, we selected Pt(PPh ) as a catalyst because of its
2. (a) Davis, F. A.; Kasu, P. V. N. Org. Prep. Proced. Int.
3
4
1
1
999, 31, 125–143; (b) Smart, B. E. J. Fluorine Chem. 2001,
09, 3–11; (c) O’Hagan, D.; Rzepa, H. S. Chem. Commun.
commercial accessibility. As far as the fluorination step
is concerned, we suggest a concerted mechanism in
+
1997, 645–652.
which the electrophilic attack of F occurs at the most
3
. (a) Welch, J. T.; Eswarakrishnan, S. In Fluorine in
Bioorganic Chemsitry; John Wiley & Sons: New York,
electronegative C–B bond in the alkenyldiboronate es-
ters, followed by a nucleophilic attack of the carbonate
base, ultimately leading to the formation of carbon
dioxide and the regeneration of bis(pinacolato)diboron,
with concomitant formation of the second C–F bond at
the terminal position. However, deprotonation from the
fluorinated cation by the carbonate to deliver a fluori-
nated olefin which could be eventually fluorinated again,
can also be considered as an alternative pathway for the
fluorination step. Two factors support this mechanism:
1
991; (b) Baasner, B.; Hageman, H.; Tatlow, J. C.
Organo-Fluorine Compounds. In Houben-Weyl Methods
of Organic Chemsitry, 4th ed.; Georg Thieme: Stuttgart,
New York, 1999; Vol. E10a–c.
4. (a) Purrington, S. T.; Jones, W. A. J. Fluorine Chem. 1984,
26, 43–46; (b) Umemoto, T.; Fukami, S.; Tomizawa, G.;
Harasawa, K.; Tawada, K.; Tomita, K. J. Am. Chem. Soc.
1
990, 112, 8563–8575; (c) Umemoto, T.; Tomita, K.
Tetrahedron Lett. 1986, 27, 3271–3274; (d) Barnette, W. E.
J. Am. Chem. Soc. 1984, 106, 452–454; (e) Differding, E.;
Ofner, H. Synlett 1991, 187–189; (f) Davis, F. A.; Han, W.
Tetrahedron Lett. 1991, 32, 1631–1634; (g) Forrest, A. K.;
O’Hanlon, P. J. Tetrahedron Lett. 1995, 36, 2117–2118; (h)
Barnes, K. D.; Yulin, H.; Hunt, D. A. Synth. Commun.
1994, 24, 1749–1755; (i) Zupan, M.; Iskra, J.; Stavber, S. J.
Fluorine Chem. 1995, 70, 7–8; (j) Brunavs, M.; Dell, C. P.;
Owton, W. M. J. Fluorine Chem. 1994, 68, 201–203; (k)
Differding, E.; Ruegg, G. M.; Rang, R. W. Tetrahedron
Lett. 1991, 32, 1779–1782; (l) Poss, A. J.; Van Der Puy,
M.; Nalewajek, D.; Shia, G. A.; Wagner, W. J.; Frenette,
R. L. J. Org. Chem. 1991, 56, 5962–5964; (m) Prakash, G.
K. S.; Hu, J.; Olah, G. A. J. Fluorine Chem. 2001, 112,
(
i) no fluorination is observed in the absence of base,
and (ii) the formation of regenerated bis(pinaco-
lato)diboron was confirmed by GC–MS analysis of the
crude reaction mixture. A close oxidation protocol has
recently been described to transform (fluoroalkenyl)bor-
2
8
anes into a-fluoroketones. Although we do not have
evidences for the participation of a radical mechanism,
we cannot discard it. Finally, the imination proceeds
easily in the presence of the dehydrating agent.
In conclusion, although organoboron compounds are
considered useful intermediates in organic synthesis, to
the best of our knowledge, the only transformation of
the two boryl units from the alkenyl diboronate ester,
into interesting functional groups, has been described
for the palladium-catalyzed C–C cross-coupling reaction
3
57–362; (n) Cahard, D.; Audouard, C.; Plaquevent, J. C.;
Roques, N. Org. Lett. 2000, 2, 3699–3701; (o) Mohar, B.;
Baudoux, J.; Plaquevent, J. C.; Cahard, D. Angew. Chem.,
Int. Ed. 2001, 40, 4214–4216.
5. Synthetic Fluorine Chemsitry; Olah, G. A., Chambers, R.
D., Prakash, G. K. S., Eds.; John Wiley and Sons: New
York, 1992.
2
9
with aryl, alkenyl, benzyl and allyl halides. In this con-
text, one of the most important issues we have addressed
in this study is the conversion of two C–B bonds into the
functionalized C@N and C–F bonds, thus providing a
direct method that transforms arylacetylenes into a,a-
difluoroimines. Experimentally we found that the effi-
ciency of the tandem catalytic diboration/electrophilic
fluorination/imination of aryl acetylenes depends on
the electronic factors of the substrates. We expect this
new synthetic approach to provide a convenient
one-pot protocol to biological and medicinal a,a-difluo-
roimines from available terminal and internal aryl
alkynes.
6
7
. Ram ´ı rez, J.; Fern a´ ndez, E. Synthesis 2005, 1698–1700.
. Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96,
1
737–1755.
8
. Nyffeler, P. T.; Gonzalez Dur o´ n, S.; Burkart, M. D.;
Vincent, S. P.; Wong, Ch. H. Angew. Chem., Int. Ed. 2005,
4
4, 192–212.
9
. (a) Matthews, D. P.; Miller, S. C.; Jarvi, E. T.; Sabol, J. S.;
McCarthy, J. R. Tetrahedron Lett. 1993, 34, 3057–3060;
(b) Bryce, M. R.; Chambers, R. D.; Mullins, S. T.; Parkin,
A. Bull. Soc. Chim. Fr. 1986, 930–932; (c) Hodson, H. F.;
Madge, D. J.; Widdowson, D. A. Synlett 1992, 831–832;
(
d) Tius, M. A.; Kawakami, J. K. Synth. Commun. 1992,
2, 1461–1471; (e) Hodson, H. F.; Madge, D. J.; Slawin,
A. N. Z.; Widdowson, D. A.; Williams, D. J. Tetrahedron
994, 50, 1899–1906.
0. (a) Greedy, B.; Gouverneur, V. Chem. Commun. 2001, 233–
2
1
1
Acknowledgments
2
7
34; (b) Gouverneur, V.; Greedy, B. Chem. Eur. J. 2002, 8,
67–771; (c) Greedy, B.; Paris, J.-M.; Vidal, T.; Gouver-
The authors thank the CTQ2004-04412/BQU for
financial support and the Generalitat de Catalunya for
providing J.R. with a fellowship, and 2005ACOM00026.
neur, V. Angew. Chem., Int. Ed. 2003, 42, 3291–3294; (d)
Thibaudeau, S.; Gouverneur, V. Org. Lett. 2003, 5, 4891–
4893; (e) Thibaudeau, S.; Fuller, R.; Gouverneur, V.