G.S. Owens, M.M. Abu-Omar / Journal of Molecular Catalysis A: Chemical 187 (2002) 215–225
225
rate constant k2. The values for the reaction in
vacuum-dried [emim]BF4 are K1 = 110 28 and
K2 = 160 36. When less water is present in the
ionic liquids, the extent of peroxide binding coop-
erativity seems to be reduced, as is the case when
the reactions are done in ACN. The plot shown in
Fig. 6 contrasts the peroxide binding to MTO in ionic
liquids, water, and ACN.
[9] D.E. Kaufmann, M. Nouroozian, H. Henze, Synlett (1996)
1091.
[10] W.A. Herrmann, V.P.W. Bohm, J. Organomet. Chem. 572
(1999) 141.
[11] A.J. Carmichael, M.J. Earle, J.D. Holbrey, P.B. McCormac,
K.R. Seddon, Org. Lett. 1 (1999) 997.
[12] C.E. Song, E.J. Roh, Chem. Commun. (2000) 837.
[13] G.S. Owens, M.M. Abu-Omar, Chem. Commun. (2000) 1165.
[14] C.J. Mathews, P.J. Smith, T. Welton, Chem. Commun. (2000)
1249.
[15] C. de Bellefon, E. Pollet, P. Grenouillet, J. Mol. Catal. 145
(1999) 121.
5. Conclusions
[16] P. Bonhote, A.-P. Dias, N. Papageorgiou, K.
Kalyanasundaram, M. Gratzel, Inorg. Chem. 35 (1996) 1168.
[17] S.N.V.K. Aki, J.F. Brennecke, A. Samanta, Chem. Commun.
(2001) 413.
This work represents the first detailed study of
the kinetics of a transition metal reaction in ionic
liquids. With respect to formation constants and
equilibrium constants of the MTO/H2O2 system, the
water-miscible dialkylimidazolium and alkylpyri-
dinium ionic liquids behave like ACN at low water
concentrations. As [H2O] increases, the liquids be-
have more like aqueous solutions with high salt con-
centrations. More studies of this nature are needed to
determine the viability of ionic liquids as efficient re-
action media. Current efforts in this lab are focused on
determining the rate constants of catalytic reactions
using the MTO/H2O2 system in ionic liquids.
[18] M.J. Muldoon, C.M. Gordon, I.R. Dunkin, J. Chem. Soc.,
Perkin Trans. 2 (2001) 43.
[19] K.R. Seddon, A. Stark, M.-J. Torres, Pure Appl. Chem. 72
(2000) 2275.
[20] A. Noda, K. Hamayizu, M. Watanabe, J. Phys. Chem. B 105
(2001) 4603.
[21] W.A. Herrmann, R.W. Fischer, W. Scherer, M.U. Rauch,
Angew. Chem. Int. Ed. Engl. 32 (1993) 1157.
[22] S. Yamazaki, J.H. Espenson, P. Huston, Inorg. Chem. 32
(1993) 4683.
[23] W.A. Herrmann, R.W. Fischer, D.W. Marz, Angew. Chem.
Int. Ed. Engl. 30 (1991) 1638.
[24] A.M. Al-Ajlouni, J.H. Espenson, J. Am. Chem. Soc. 117
(1995) 9243.
[25] K.A. Vassell, J.H. Espenson, Inorg. Chem. 33 (1994) 5491.
[26] W. Adam, C.M. Mitchell, C.R. Saha-Moller, Tetrahedron 50
(1994) 13121.
[27] S. Yamazaki, Bull. Chem. Soc. Jpn. 69 (1996) 2955.
[28] M.M. Abu-Omar, J.H. Espenson, J. Am. Chem. Soc. 117
(1995) 272.
Acknowledgements
This research was supported by the University of
California Toxic Substances Research and Teach-
ing Program (UCTSR & TP), the Beckman Foun-
dation through a BYI to M.M.A.-O., and the NSF
(CHE-9874857-CAREER).
[29] W. Adam, W.A. Herrmann, J. Lin, C.R. Saha-Moller, J. Org.
Chem. 59 (1994) 8281.
[30] W. Adam, W.A. Herrmann, C.R. Saha-Moller, M. Shimizu,
J. Mol. Catal. 97 (1995) 15.
[31] J. Jacob, J.H. Espenson, Inorg. Chim. Acta 270 (1998) 55.
[32] W.-D. Wang, J.H. Espenson, Inorg. Chem. 36 (1997) 5069.
[33] W.-D. Wang, J.H. Espenson, J. Am. Chem. Soc. 120 (1998)
11335.
References
[34] W.A. Herrmann, F.E. Kuhn, R.W. Fischer, W.R. Thiel, C.C.
Romao, Inorg. Chem. 31 (1992) 4431.
[35] J.D. Holbrey, K.R. Seddon, J. Chem. Soc., Dalton Trans.
(1999) 2133.
[1] T. Welton, Chem. Rev. 99 (1999) 2071.
[2] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39 (2000)
3772.
[36] J. Robinson, R.A. Osteryoung, J. Am. Chem. Soc. 101 (1979)
[3] M.J. Earle, K.R. Seddon, Pure Appl. Chem. 72 (2000) 1391.
[4] M.M. Abu-Omar, Green Chemistry, 2002 McGraw-Hill
Yearbook of Science and Technology, McGraw-Hill, New
York, 2001, p. 148.
[5] G.S. Owens, M.M. Abu-Omar, Adv. Chem. Ser. 818 (2002),
in press.
[6] Y. Chauvin, L. Mussman, H. Olivier, Angew. Chem. Int. Ed.
Engl. 34 (1995) 2698.
[7] P.A.Z. Suarez, J.E.L. Dullius, S. Einloft, R.F. de Souza, J.
Dupont, Polyhedron 15 (1996) 1217.
323.
[37] J.H. Espenson, O. Pestovsky, P. Huston, S. Staudt, J. Am.
Chem. Soc. 116 (1994) 2869.
[38] A.E. Visser, R.P. Swatloski, W.M. Reichert, S.T. Griffin, R.D.
Rogers, Ind. Eng. Chem. Res. 39 (2000) 3596.
[39] J.H. Espenson, Chemical Kinetics and Reaction Mechanisms,
second ed., McGraw-Hill, New York, 1995, pp. 199–203.
[40] W. Adam, C.M. Mitchell, Angew. Chem. Int. Ed. Engl. 35
(1996) 533.
[41] T.R. Boehlow, C.D. Spilling, Tetrahedron Lett. 37 (1996)
2717.
[8] J.F. Knifton, J. Mol. Catal. 43 (1987) 65.