Inorganic Chemistry
Article
(28) Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D.
Hybrid organicinorganic perovskites: low-cost semiconductors with
intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.
(29) Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic
part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3
cells. J. Phys. Chem. Lett. 2015, 6, 2452−2456.
(30) Wang, S.; Mitzi, D. B.; Feild, C. A.; Guloy, A. Synthesis and
characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): stereo-
chemical activity in divalent tin and lead halides containing single <
110> perovskite sheets. J. Am. Chem. Soc. 1995, 117, 5297−5302.
(31) Mitzi, D. B. Synthesis, crystal structure, and optical and thermal
properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 1996,
8, 791−800.
(48) Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.;
Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with
enhanced moisture stability. Angew. Chem., Int. Ed. 2014, 53, 11232−
11235.
(49) Russell, V. A.; Ward, M. D. Molecular crystals with
dimensionally controlled hydrogen-bonded nanostructures. Chem.
Mater. 1996, 8, 1654−1666.
(50) Russell, V. A.; Evans, C. C.; Li, W.; Ward, M. D. Nanoporous
molecular sandwiches: pillared two-dimensional hydrogen-bonded
networks with adjustable porosity. Science 1997, 276, 575−579.
(51) Pauling, L. The nature of the chemical bond and the structure of
molecules and crystals; Cornell University Press: Ithaca, NY, 1940; pp
286−288.
(52) Hu, K.-L.; Kurmoo, M.; Wang, Z.; Gao, S. Metal−organic
perovskites: synthesis, structures, and magnetic properties of [C-
(NH2)3][MII(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn;
C(NH2)3= Guanidinium). Chem. - Eur. J. 2009, 15, 12050−12064.
(53) Collings, I. E.; Hill, J. A.; Cairns, A. B.; Cooper, R. I.;
Thompson, A. L.; Parker, J. E.; Tang, C. C.; Goodwin, A. L.
Compositional dependence of anomalous thermal expansion in
perovskite-like ABX3 formates. Dalton Trans. 2016, 45, 4169−4178.
(32) Steadman, J. P.; Willett, R. D. The crystal structure of
(C2H5NH3)2CuCl4. Inorg. Chim. Acta 1970, 4, 367−371.
(33) Bellitto, C.; Day, P. Feature article. Organic-intercalated
halogenochromates (II): low-dimensional magnets. J. Mater. Chem.
1992, 2, 265−271.
(34) Dolzhenko, Y. I.; Inabe, T.; Maruyama, Y. In situ X-ray
observation on the intercalation of weak interaction molecules into
perovskite-type layered crystals (C9H19NH3)2PbI4 and
(C10H21NH3)2CdCl4. Bull. Chem. Soc. Jpn. 1986, 59, 563−567.
(35) Smith, M. D.; Pedesseau, L.; Kepenekian, M.; Smith, I. C.;
Katan, C.; Even, J.; Karunadasa, H. I. Decreasing the electronic
confinement in layered perovskites through intercalation. Chem. Sci.
2017, 8, 1960−1968.
(36) Ishihara, T.; Hirasawa, M.; Goto, T. Optical properties and
electronic structures of self-organized quantum well
(CnH2n+1NH3)2PbX4 (X = I, Br, Cl). Jpn. J. Appl. Phys. 1995, 34,
71−73.
(37) Calabrese, J.; Jones, N. L.; Harlow, R. L.; Herron, N.; Thorn, D.
L.; Wang, Y. Preparation and characterization of layered lead halide
compounds. J. Am. Chem. Soc. 1991, 113, 2328−2330.
(38) Lemmerer, A.; Billing, D. G. Lead halide inorganic-organic
hybrids incorporating diammonium cations. CrystEngComm 2012, 14,
1954−1966.
́
(54) Szafranski, M.; Katrusiak, A. Phase transitions in the layered
structure of diguanidinium tetraiodoplumbate. Phys. Rev. B: Condens.
Matter Mater. Phys. 2000, 61, 1026−1035.
(55) Daub, M.; Haber, C.; Hillebrecht, H. Synthesis, crystal
structures, optical properties and phase transitions of the layered
guanidinium-based hybrid perovskites (C(NH2)3)2MI4; M = Sn, Pb.
Eur. J. Inorg. Chem. 2017, 2017, 1120−1126.
(56) Kieslich, G.; Sun, S.; Cheetham, A. K. Solid-state principles
applied to organic−inorganic perovskites: new tricks for an old dog.
Chem. Sci. 2014, 5, 4712−4715.
(57) Saba, M.; Cadelano, M.; Marongiu, D.; Chen, F.; Sarritzu, V.;
Sestu, N.; Figus, C.; Aresti, M.; Piras, R.; Geddo Lehmann, A.; Cannas,
C.; Musinu, A.; Quochi, F.; Mura, A.; Bongiovanni, G. Correlated
electron−hole plasma in organometal perovskites. Nat. Commun.
2014, 5, 5049.
(58) Elliott, R. J. Intensity of optical absorption by excitons. Phys.
(39) Slavney, A. H.; Smaha, R. W.; Smith, I. C.; Jaffe, A.; Umeyama,
D.; Karunadasa, H. I. Chemical approaches to addressing the instability
and toxicity of lead−halide perovskite absorbers. Inorg. Chem. 2017,
56, 46−55.
Rev. 1957, 108, 1384−1389.
(59) Delley, B. An all-electron numerical method for solving the local
density functional for polyatomic molecules. J. Chem. Phys. 1990, 92,
508−517.
(40) Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M.
Conducting tin halides with a layered organic-based perovskite
structure. Nature 1994, 369, 467−469.
(60) Delley, B. From molecules to solids with the DMol3 approach. J.
Chem. Phys. 2000, 113, 7756−7764.
(61) Savin, A.; Nesper, R.; Wengert, S.; Fassler, T. F. ELF: the
̈
(41) Stoumpos, C. C.; Soe, C. M. M.; Tsai, H.; Nie, W.; Blancon, J.-
electron localization function. Angew. Chem., Int. Ed. Engl. 1997, 36,
1808−1832.
́
C.; Cao, D. H.; Liu, F.; Traore, B.; Katan, C.; Even, J.; Mohite, A. D.;
Kanatzidis, M. G. High members of the 2D Ruddlesden-Popper halide
perovskites: synthesis, optical properties, and solar cells of
(CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem. 2017, 2, 427−440.
(42) Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour,
R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.;
Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.;
Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. High-
efficiency two-dimensional Ruddlesden−Popper perovskite solar cells.
Nature 2016, 536, 312−316.
(62) Max-Planck-Institut fur Chemische Physik fester Stoffe; http://
̈
(63) Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A. Highly
tunable colloidal perovskite nanoplatelets through variable cation,
metal, and halide composition. ACS Nano 2016, 10, 7830−7839.
(64) Hatch, D. M.; Stokes, H. T.; Aleksandrov, K. S.; Misyul, S. V.
Phase transitions in the perovskitelike A2BX4 structure. Phys. Rev. B:
Condens. Matter Mater. Phys. 1989, 39, 9282−9288.
(65) Trots, D. M.; Myagkota, S. V. High-temperature structural
evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem.
Solids 2008, 69, 2520−2526.
(43) Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-
G. Highly reproducible perovskite solar cells with average efficiency of
18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of
lead (II) iodide. J. Am. Chem. Soc. 2015, 137, 8696−8699.
(44) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.;
Seok, S. I. High-performance photovoltaic perovskite layers fabricated
through intramolecular exchange. Science 2015, 348, 1234−1237.
(46) Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W. Stability of
perovskite solar cells: a prospective on the substitution of the A cation
and X anion. Angew. Chem., Int. Ed. 2017, 56, 1190−1212.
(47) Ishihara, T. Optical properties of PbI-based perovskite
structures. J. Lumin. 1994, 60-61, 269−274.
(66) Moller, C. K. Crystal structure and photoconductivity of
caesium plumbohalides. Nature 1958, 182, 1436−1436.
́
̌ ̌
(67) Rodova, M.; Brozek, J.; Knízek, K.; Nitsch, K. Phase transitions
in ternary caesium lead bromide. J. Therm. Anal. Calorim. 2003, 71,
667−673.
(68) Kawano, N.; Koshimizu, M.; Sun, Y.; Yahaba, N.; Fujimoto, Y.;
Yanagida, T.; Asai, K. Effects of organic moieties on luminescence
properties of organic−inorganic layered perovskite-type compounds. J.
Phys. Chem. C 2014, 118, 9101−9106.
(69) Tanaka, K.; Takahashi, T.; Kondo, T.; Umeda, K.; Ema, K.;
Umebayashi, T.; Asai, K.; Uchida, K.; Miura, N. Electronic and
excitonic structures of inorganic−organic perovskite-type quantum-
L
Inorg. Chem. XXXX, XXX, XXX−XXX