D
Synlett
S. A. Labb et al.
Letter
solvent gave the final CHON-compliant water-soluble, N-
donor BTzBP ligand.
(3) (a) Cotton, S. In Lanthanide and Actinide Chemistry.; J. Wiley &
Sons Ltd: Chichester, 2006. (b) Katz, J. J.; Morss, L. R.; Edelstein,
N. M.; Fuger, J. In The Chemistry of the Actinide and Transactinide
Elements, Vol. 1; Katz, J. J.; Morss, L. R.; Edelstein, N. M.; Fuger, J.,
Ed.; Springer: Dordrecht, 2006, 1–17.
A survey of the solubility of 8a in different concentra-
tions of nitric acid (the desired solvent for the An/Ln target
ions) showed that, even in de-ionized water, the ligand has
a molar solubility of ca. 35 mM (ca. 3× greater than that ob-
served for the BTrzPhen ligands). This increases slightly to
(
4) (a) Choppin, G. R. J. Alloys Compd. 2002, 344, 55. (b) Jarvinen, G.
D.; Barrans, R. E.; Schroeder, N. C.; Wade, K. L.; Jones, M. M.;
Smith, B. F.; Mills, J. L.; Howard, G.; Freiser, H.; Muralidharan, S.
In Separation of f Elements; Nash, K. L.; Choppin, G. R., Ed.;
Plenum Press: New York, 1995.
ca. 5 mM in 1 M HNO . However when the concentration of
3
HNO was increased to 2 and 4 M, an even more substantial
3
(
(
(
5) (a) Leoncini, A.; Huskens, J.; Verboom, W. Chem. Soc. Rev. 2017,
increase in solubility to ca. 175 and >780 mM, respectively,
was observed. A preliminary analysis of these solutions
46, 7229. (b) Hudson, M. J.; Harwood, L. M.; Laventine, D. M.;
Lewis, F. W. Inorg. Chem. 2013, 52,07 3414. (c) Panak, P. J.; Geist,
A. Chem. Rev. 2013, 113, 1199.
1
showed no degraded or hydrolyzed products by H NMR
spectroscopy after four weeks at room temperature.
In conclusion, this new, water-soluble, CHON-compli-
ant, N-donor BTzBP ligand can be made in a high yielding
and readily purified route. The change in nature and place-
ment of the solubilizing group on these classes of ligands
increases its solubility by ca. threefold compared to the
BTrzPhen ligands, making this ligand an excellent candidate
for future extraction and solution studies.
6) (a) Hudson, M. J. Czech. J. Phys. 2003, 53, A305. (b) Madic, C.;
Hudson, M. J. In High-level Liquid Waste Partitioning by Means of
Completely Incinerable Extractants; EUR 18038, European Com-
mission: Luxembourg, 1998.
7) (a) Zaytsev, A. V.; Bulmer, B.; Kozhevnikov, V. N.; Sims, M.;
Modolo, G.; Wilden, A.; Waddell, P. G.; Geist, A.; Panak, P. J.;
Wessling, P.; Lewis, F. W. Chem. Eur. J. 2020, 26, 428. (b) Distler,
P.; Stamberg, K.; John, J.; Harwood, L. M.; Lewis, F. W. J. Chem.
Thermodyn. 2020, 141, 105955. (c) Afsar, A.; Babra, J. S.; Distler,
P.; Harwood, L. M.; Hopkins, I.; John, J.; Westwood, J.; Selfe, Z. Y.
Heterocycles 2020, 101, 209. (d) Williams, J.; Dehaudt, J.;
Bryantsev, V. S.; Luo, H.; Abney, C. W.; Dai, S. Chem. Commun.
Funding Information
2
017, 53, 2744.
We gratefully acknowledge the National Science Foundation (MRI No.
(
8) (a) Foreman, M. R. S. J.; Hudson, M. J.; Geist, A.; Madic, C.; Weigl,
M. Solvent Extr. Ion Exch. 2005, 23,05 645. (b) Aneheim, E.;
Gruner, B.; Ekberg, C.; Foreman, M. R. S. J.; Hajkova, Z.;
Lofstrom-Engdahl, E.; Drew, M. G. B.; Hudson, M. J. Polyhedron
1827905) for financial support to purchase a 400 MHz NMR spec-
trometer console and autosampler, and additional research support
by the National Science Foundation: Bridges for SUCCESS (No.
0969428) and Salisbury University.
N
ati
o
n
a
lS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(0
9
6
9
4
2
8)Nati
o
n
a
lS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(1
8
2
7
9
0
5)
2013, 50, 154. (c) Lofstrom-Engdahl, E.; Aneheim, E.; Ekberg, C.;
Skarnemark, G. J. Radioanal. Nucl. Chem. 2013, 296, 733.
9) (a) Drew, M. G. B.; Foreman, M. R. S. J.; Hill, C.; Hudson, M. J.;
Madic, C. Inorg. Chem. Commun. 2005, 8, 239. (b) Nilsson, M.;
Ekberg, C.; Foreman, M. R. S.; Hudson, M.; Liljenzin, J. O.;
Modolo, G.; Skarnemark, G. Solvent Extr. Ion Exch. 2006, 24, 823.
(
Acknowledgment
The authors are grateful to Ken Nash and former members of the
Nash Group for their many discussions that provided impetus for this
work.
(c) Lewis, F. W.; Harwood, L. M.; Hudson, M. J.; Drew, M. G. B.;
Desreux, J. F.; Vidick, G.; Bouslimani, N.; Modolo, G.; Wilden, A.;
Sypula, M.; Vu, T.-H.; Simonin, J.-P. J. Am. Chem. Soc. 2011, 133,
1
3093.
Supporting Information
(
10) (a) Muller, J. M.; Galley, S. S.; Albrecht-Schmitt, T. E.; Nash, K. L.
Inorg. Chem. 2016, 55,21 11454. (b) Muller, J. M.; Nash, K. L.
Solvent Extr. Ion Exch. 2016, 34, 322.
11) (a) Modolo, G.; Wilden, A.; Geist, A.; Magnusson, D.; Malmbeck,
R. Radiochim. Acta 2012, 100, 715. (b) Modolo, G.; Wilden, A.;
Kaufholz, P.; Bosbach, D.; Geist, A. Prog. Nucl. Energy 2014, 72,
Supporting information for this article is available online at
https://doi.org/10.1055/s-0040-1707163.
S
u
p
p
orti
n
g Inform ati
o
n
S
u
p
p
orit
n
g Inform ati
o
n
(
References and Notes
107. (c) Modolo, G.; Geist, A.; Miguirditchian, M. In Reprocessing
(
1) (a) Potential Benefits and Impacts of Advanced Nuclear Fuel
Cycles with Actinide Partitioning and Transmutation. NEA No.
894; OECD, Nuclear Energy Agency (NEA): Paris, 2011
b) Nash, K. L.; Nilsson, M. In Reprocessing and Recycling of Spent
Nuclear, 1; Taylor, R., Ed.; Woodhead Publishing: Oxford, 2015,
. (c) Poinssot, Ch.; Boullis, B.; Bourg, S. In Reprocessing and
and Recycling of Spent Nuclear Fuel, 10; Taylor, R., Ed.; Wood-
head Publishing: Oxford, 2015, 245–287.
6
(
(12) (a) Peterman, D.; Geist, A.; Modolo, G.; Galán, M. H.; Olson, L.;
McDowell, R. Ind. Eng. Chem. Res. 2016, 55, 10427. (b) Wilden,
A.; Modolo, G.; Kaufholz, P.; Sadowski, F.; Lange, S.; Sypula, M.;
Magnusson, D.; Müllich, U.; Geist, A.; Bosback, D. Solvent
Extraction and Ion Exchange 2014, 33, 91. (c) Lewis, F. W.;
Harwood, L. M.; Hudson, M. J.; Geist, A.; Kozhevnikov, V. N.;
Distler, P.; John, J. Chem. Sci. 2015, 6, 4812.
3
Recycling of Spent Nuclear Fuel, 2.; Taylor, R., Ed.; Woodhead
Publishing: Oxford, 2015, 27. (d) Salvatores, M.; Palmiotti, G.
Prog. Part. Nucl. Phys. 2011, 66, 144.
(
2) Glatz, J. P.; Soucek, P.; Malmbeck, R. In Reprocessing and Recy-
cling of Spent Nuclear Fuel, 3; Taylor, R., Ed.; Woodhead Publish-
ing: Oxford, 2015, 49.
(13) (a) Mossini, E.; Macerata, E.; Brambilla, L.; Panzeri, W.; Mele, A.;
Castiglioni, C.; Mariani, M. J. Radioanal. Nucl. Chem. 2019, 322,
1663. (b) Wagner, C.; Mossini, R.; Macerata, E.; Mariani, M.;
Arduini, A. C.; Geist, A.; Panak, P. J. Inorg. Chem. 2017, 56, 2135.
(c) Macerata, E.; Mossini, E.; Scaravaggi, S.; Mariani, M.; Mele,
©
2020. Thieme. All rights reserved. Synlett 2020, 31, A–E