L. Li et al. / Carbohydrate Polymers 86 (2011) 708–715
715
and localization characteristics of nanoparticles that leads to more
efficient intracellular PhA localization via the endocytic pathway,
but also reduced photoactivity of free PhA by possible negative
aggregation behavior resulting in quenching effect in an aqueous
environment. Therefore, the HP and FHP nanoparticles could be
efficient carriers for the targeted delivery of PhA, with minimal side
effects.
Hajri, A., Wack, S., Meyer, C., Smith, M. K., Leberquier, C., Kedinger, M., & Aprahamian,
M. (2002). In vitro and in vivo efficacy of photofrin and pheophorbide a, a bacte-
riochlorin, in photodynamic therapy of colonic cancer cells. Photochemistry and
Photobiology, 75(2), 140–148.
Hoebeke, M., & Damoiseau, X. (2002). Determination of the singlet oxygen quan-
tum yield of bacteriochlorin a: A comparative study in phosphate buffer and
aqueous dispersion of dimiristoyl-l-alpha-phosphatidylcholine liposomes. Pho-
tochemistry and Photobiology Science, 1(4), 283–287.
Kalyanasundaram, K., & Thomas, J. K. (1977). Environmental effects on vibronic band
intensities in pyrene monomer fluorescence and their application in studies of
micellar systems. Journal of the American Chemical Society, 99(7), 2039–2044.
Konan, Y. N., Gurny, R., & Allemann, E. (2002). State of the art in the delivery of photo-
sensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology
B-Biology, 66(2), 89–106.
4. Conclusions
Self-assembled nanoparticles based on HP and FHP conjugates
were prepared as potential PS carriers for use in PDT. The con-
jugation of PhA and folate molecules significantly lowered the
anticoagulant activity of heparin. In aqueous media, HP and FHP
conjugates formed self-assembled nanoparticles with a diame-
ter <200 nm. The low CQC values (0.39–4.90 mg/L) suggest that
the HP and FHP nanoparticles are stable for systemic PhA deliv-
ery. The results from photoactivity tests and a determination of
singlet oxygen quantum yield, indicated the autoquenching prop-
erties of HP and FHP nanoparticles. The cytotoxicity of HP and FHP
nanoparticles was higher than that of free PhA with light treatment,
while the nanoparticles revealed low cytotoxicity against cancer
cells without light. These findings indicated that the HP and FHP
nanoparticles could be efficient carriers with practical applications
in PDT.
Lee, S. J., Park, K., Oh, Y. K., Kwon, S. H., Her, S., Kim, I. S., Choi, K., Kim, H., Lee,
S. G., Kim, K., & Kwon, I. C. (2009). Tumor specificity and therapeutic efficacy
of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-
bearing mice. Biomaterials, 30(15), 2929–2939.
Li, F., Bae, B. C., & Na, K. (2010). Acetylated hyaluronic acid/photosensitizer conjugate
for the preparation of nanogels with controllable phototoxicity: Synthesis, char-
acterization autophotoquenching properties, and in vitro phototoxicity against
He La cells. Bioconjugate Chemistry, 21(7), 1312–1320.
Li, L., Huh, K. M., Lee, Y. K., & Kim, S. Y. (2010). Design of a multifunctional
heparin-based nanoparticle system for anticancer drug delivery. Macromolec-
ular Research, 18(2), 153–161.
Li, L., Moon, H. T., Park, J. Y., Heo, Y. J., Choi, Y. D., Tran, T. H., Lee, Y. K., Kim, S. Y., & Huh,
K. M. (2011). Heparin-based self-assembled nanoparticles for photodynamic
therapy. Macromolecular Research, 19(5), 487–494.
Linhardt, R. J. (1991). Heparin - an important drug enters its 7th decade. Chemistry
& Industry, 2, 45–50.
Liu, Z. H., Jiao, Y. P., Wang, Y. F., Zhou, C. R., & Zhang, Z. Y. (2008). Polysaccharides-
based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews,
60(15), 1650–1662.
MacDonald, I. J., & Dougherty, T. J. (2001). Basic principles of photodynamic therapy.
Journal of Porphyrins and Phthalocyanines, 5(2), 105–129.
Acknowledgements
Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics
in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins
and the antitumor agent smancs. Cancer Research, 46(12, Pt 1), 6387–6392.
Mousa, S. A., & Petersen, L. J. (2009). Anti-cancer properties of low-molecular-weight
heparin: Preclinical evidence. Thrombosis and Haemostasis, 102(2), 258–267.
Park, I. K, Kim, Y. J., Tran, T. H., Huh, K. M., & Lee, Y. K. (2010). Water-soluble heparin-
PTX conjugates for cancer targeting. Polymer, 51(15), 3387–3393.
Park, I. K., Tran, T. H., Oh, I. H., Kim, Y. J., Cho, K. J., Huh, K. M., & Lee, Y. K. (2010). Ternary
biomolecular nanoparticles for targeting of cancer cells and anti-angiogenesis.
European Journal of Pharmaceutical Sciences, 41(1), 148–155.
Park, K., Lee, G. Y., Kim, Y. S., Yu, M., Park, R. W., Kim, I. S., Kim, S. Y., & Byun, Y. (2006).
Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and
its antitumor activity. Journal of Controlled Release, 114(3), 300–306.
Roder, B., Hanke, T., Oelckers, S., Hackbarth, S., & Symietz, C. (2000). Photophysi-
cal properties of pheophorbide a in solution and in model membrane systems.
Journal of Porphyrins and Phthalocyanines, 4(1), 37–44.
Roslaniec, M., Weitman, H., Freeman, D., Mazur, Y., & Ehrenberg, B. (2000). Liposome
binding constants and singlet oxygen quantum yields of hypericin, tetrahydroxy
helianthrone and their derivatives: Studies in organic solutions and in lipo-
somes. Journal of Photochemistry and Photobiology B-Biology, 57(2–3), 149–158.
Smorenburg, S. M., & Van Noorden, C. J. F. (2001). The complex effects of heparins
on cancer progression and metastasis in experimental studies. Pharmacological
Reviews, 53(1), 93–105.
This work was supported by a grant from the Fundamental R&D
Program for Core Technology of Materials funded by the Ministry
of Knowledge Economy, Republic of Korea.
References
Allison, R. R., Mota, H. C., Bagnato, V. S., & Sibata, C. H. (2008). Bio-nanotechnology
and photodynamic therapy - State of the art review. Photodiagnosis and Photo-
dynamic Therapy, 5(1), 19–28.
Bae, B. C.,
& Na, K. (2010). Self-quenching polysaccharide-based nanogels of
pullulan/folate-photosensitizer conjugates for photodynamic therapy. Bioma-
terials, 31(24), 6325–6335.
Barzu, T., Van Rijn, J. L., Petitou, M., Molho, P., Tobelem, G., & Caen, J. P. (1986).
Endothelial binding sites for heparin. Specificity and role in heparin neutraliza-
tion. Biochemistry Journal, 238(3), 847–854.
Bechet, D., Couleaud, P., Frochot, C., Viriot, M. L., Guillemin, F., & Barberi-Heyob, M.
(2008). Nanoparticles as vehicles for delivery of photodynamic therapy agents.
Trends in Biotechnology, 26(11), 612–621.
Bobek, V., & Kovarik, J. (2004). Antitumor and antimetastatic effect of warfarin and
heparins. Biomedicine & Pharmacotherapy, 58(4), 213–219.
Cho, K. J., Moon, H. T., Park, G. E., Jeon, O. C., Byun, Y., & Lee, Y. K. (2008). Preparation
of sodium deoxycholate (DOC) conjugated heparin derivatives for inhibition of
angiogenesis and cancer cell growth. Bioconjugate Chemistry, 19(7), 1346–1351.
Dolmans, D. E., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer.
Nature Reviews Cancer, 3(5), 380–387.
Ernst, S., Langer, R., Cooney, C. L., & Sasisekharan, R. (1995). Enzymatic degradation
of glycosaminoglycans. Critical Reviews in Biochemistry and Molecular Biology,
30(5), 387–444.
Fernandez, J. M., Bilgin, M. D., & Grossweiner, L. I. (1997). Singlet oxygen generation
by photodynamic agents. Journal of Photochemistry and Photobiology B-Biology,
37(1–2), 131–140.
Ferrario, A., von Tiehl, K. F., Rucker, N., Schwarz, M. A., Gill, P. S., & Gomer, C. J. (2000).
Antiangiogenic treatment enhances photodynamic therapy responsiveness in a
mouse mammary carcinoma. Cancer Research, 60(15), 4066–4069.
Tang, P. M., Chan, J. Y., Au, S. W., Kong, S. K., Tsui, S. K., Waye, M. M., Mak, T. C., Fong,
W. P., & Fung, K. P. (2006). Pheophorbide a, an active compound isolated from
Scutellaria barbata, possesses photodynamic activities by inducing apoptosis in
human hepatocellular carcinoma. Cancer Biology & Therapy, 5(9), 1111–1116.
Tang, P. M., Liu, X. Z., Zhang, D. M., Fong, W. P., & Fung, K. P. (2009). Pheophorbide
a based photodynamic therapy induces apoptosis via mitochondrial-mediated
pathway in human uterine carcinosarcoma. Cancer Biology and Therapy, 8(6).
Thunberg, L., Backstrom, G., Wasteson, A., Robinson, H. C., Ogren, S., & Lindahl,
U. (1982). Enzymatic depolymerization of heparin-related polysaccharides.
Substrate specificities of mouse mastocytoma and human platelet endo-beta-
d-glucuronidases. Journal of Biological Chemistry, 257(17), 10278–10282.
Yin, X., Zhou, J., Jie, C., Xing, D., & Zhang, Y. (2004). Anticancer activity and mechanism
of Scutellaria barbata extract on human lung cancer cell line A549. Life Science,
75(18), 2233–2244.