e.g., tetra-n-butylammonium bromide-sodium hydrox-
ide;11 (3) heterogeneous catalysts, such as anionic sur-
factants,12 Montmorillonite K10,13 Nafion-H,14 H-â zeo-
lite,15 and zirconyl sulfophenyl phosphonate;16 and (4)
enzyme catalysts, e.g., lipases.17 Boric acid in conjunction
with a catalytic amount of H2SO4 leads to the corre-
sponding furanosyl peresters.18 Very recently, use of a
dicyanamide-based ionic liquid19 both as a solvent and a
basic catalyst has been reported for per-O-acetylation.
A variety of other catalysts in combination with excess
acetic anhydride and solvents have been employed in the
O-acetylation of non-carbohydrate alcohols, including
Bu3P,20 CoCl2,21 TaCl5,22 TMSOTf,23 iminophosphorane
bases with enol esters,24 distannoxane catalysis,25 and
metal trifluoromethanesulfonates [M(OTf)n] such as Sc-
F a cile Cu (OTf)2-Ca ta lyzed P r ep a r a tion of
P er -O-a cetyla ted Hexop yr a n oses w ith
Stoich iom etr ic Acetic An h yd r id e a n d
Sequ en tia l On e-P ot An om er ic Su bstitu tion
to Th ioglycosid es u n d er Solven t-F r ee
Con d ition s
Cheng-An Tai,† Suvarn S. Kulkarni,‡ and
Shang-Cheng Hung*,‡
Institute of Chemistry, Academia Sinica, Taipei 115,
Taiwan, and Department of Chemistry, National Chung
Cheng University, Chiayi 621, Taiwan
schung@chem.sinica.edu.tw
Received February 25, 2003
26
(OTf)3 and its complex with trifluoromethanesulfona-
mide,27 In(OTf)3,28 VO(OTf)2,29 Bi(OTf)3,30 and Cu(OTf)2.31
In contrast, the potential of these versatile, water-stable,
and reusable M(OTf)n catalysts has been exploited scarcely
in carbohydrates.29 We have recently demonstrated that
Sc(OTf)3 is an efficient catalyst in per-O-acetylation and
Abstr a ct: Solvent-free per-O-acetylation of hexoses with a
stoichiometric amount of acetic anhydride employing 0.03
mol % Cu(OTf)2 proceeded in high yields (90-99%) at room
temperature to give exclusively pyranosyl products as an
anomeric mixture, the R/â ratio of which was dependent on
the temperature and amount of catalyst used. Sequential
anomeric substitution with p-thiocresol in the presence of
BF3‚etherate gave the thioglycosides, isolated exclusively or
predominantly as one anomer in 66-75% yields.
(6) Hyatt, J . A.; Tindall, G. W. Heterocycles 1993, 35, 227.
(7) Binch, H.; Stangier, K.; Thiem, J . Carbohydr. Res. 1998, 306,
409.
(8) Limousin, C.; Cleophax, J .; Prtit, A.; Loupy, A.; Lukacs, G. J .
Carbohydr. Chem. 1997, 16, 327.
(9) Dasgupta, F.; Singh, P. P.; Srivastava, H. C. Carbohydr. Res.
1980, 80, 346.
(10) Kumareswaran, R.; Gupta, A.; Vankar, Y. D. Synth. Commun.
1997, 27, 277.
(11) Szeja, W. Pol. J . Chem. 1980, 54, 1301.
(12) Mueller, R.; Oftring, A. Anionic Surfactants as Catalysts for
Complete Acylation of Polyols; BASF: Germany, 1994; p 4.
(13) Bhaskar, P. M.; Loganathan, D. Tetrahedron Lett. 1998, 39,
2215.
(14) Kumareswaran, R.; Pachamuthu, K.; Vankar, Y. D. Synlett
2000, 11, 1652.
(15) Bhaskar, P. M.; Loganathan, D. Synlett 1999, 129.
(16) Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.; Rossi,
M. Synth. Commun. 2000, 30, 1319.
(17) J unot, N.; Meslin, J . C.; Rabiller, C. Tetrahedron: Asymmetry
1995, 6, 1387
(18) Furneaux, R. H.; Rendle, P. M.; Sims, I. M. J . Chem. Soc.,
Perkin Trans. 1 2000, 2011.
(19) Forsyth, S. A.; MacFarlane, D. R.; Thomson, R. J .; Itzstein, M.
Chem. Commun. 2002, 714.
(20) (a) Vedejs, E.; Diver, S. T. J . Am. Chem. Soc. 1993, 115, 3358.
(b) Vedejs, E.; Bennett, N. S.; Conn, L. M.; Diver, S. T.; Gingras, M.;
Lin, S.; Oliver, P. A.; Peterson, M. J . J . Org. Chem. 1993, 58, 7286.
(21) Iqbal, J .; Srivastava, R. R. J . Org. Chem. 1992, 57, 2001.
(22) Chandrasekhar, S.; Ramachander, T.; Takhi, M. Tetrahedron
Lett. 1998, 39, 3263.
(23) Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A.
J . Org. Chem. 1998, 63, 2342.
(24) Ilankumaran, P.; Verkade, J . J . Org. Chem. 1999, 64, 9063.
(25) Orita, A.; Sakamoto, K.; Hamada, Y.; Mitsutome, A.; Otera, J .
Tetrahedron 1999, 55, 2899.
(26) (a) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J .
Am. Chem. Soc. 1995, 117, 4413. (b) Ishihara, K.; Kubota, M.;
Kurihara, H.; Yamamoto, H. J . Org. Chem. 1996, 61, 4560. (c)
Greenwald, R. B.; Pendri, A.; Zhao, H. Tetrahedron: Asymmetry 1998,
9, 915. (d) Greenwald, R. B.; Pendri, A.; Zhao, H. J . Org. Chem. 1998,
63, 7559.
(27) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. Synlett
1996, 7, 265.
(28) Chauhan, K. K.; Frost, C. G.; Love, I.; Waite, D. Synlett 1999,
11, 1743.
Per-O-acetylated hexopyranoses and their derived
thioglycosides are valuable building blocks for the syn-
thesis of biologically potent oligosaccharides, glyco-
conjugates, as well as natural products.1 Per-O-acetyla-
tion is one of the most frequently used reaction in
carbohydrates primarily for initial protection of sugars
and also to aid spectral characterization and identifica-
tion of target molecules. This is generally performed
using acetic anhydride as the reagent and a variety of
catalysts. Pyridine, which serves a dual purpose as a
solvent and as a catalyst, is most widely employed despite
its known toxicity and unpleasant odor.2 Further addition
of pyridine derivatives, for example, 4-(N,N-dimethyl-
amino)pyridine and 4-(1-pyrrolidino)pyridine, as a co-
catalyst speeds up this transformation.3 Some common
methods involving sodium acetate-4 and iodine-promoted5
per-O-acetylation of sugars have been investigated. How-
ever, excess acetic anhydride as a solvent causes tedious
workup in the neutralization process. Other catalysts
that have been shown to be effective for this purpose
include (1) classical acids, for example, H2SO4,6 HClO4,7
ZnCl2,8 FeCl3,9 and TMSCl;10 (2) phase-transfer catalysts,
† National Chung Cheng University.
‡ Academia Sinica.
(1) (a) Garegg, P. J . Adv. Carbohydr. Chem. Biochem. 1997, 52, 179.
(b) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong,
C.-H. J . Am. Chem. Soc. 1999, 121, 734. (c) Ye, X.-S.; Wong, C.-H. J .
Org. Chem. 2000, 65, 2410.
(2) Yu, B.; Xie, J .; Deng, S.; Hui, Y. J . Am. Chem. Soc. 1999, 121,
12196.
(3) Hofle, G.; Steglich, W.; Vorbruggen, H. Angew. Chem., Int. Ed.
Engl. 1978, 17, 569.
(4) Wolfrom, M. L.; Thompson, A. Methods Carbohydr. Chem. 1963,
2, 211.
(29) Chen, C.-T.; Kuo, J .-H.; Li, C.-H.; Barhate, N. B.; Hon, S.-W.;
Li, T.-W.; Chao, S.-D.; Liu, C.-C.; Li, Y.-C.; Chang, I.-H.; Lin, J .-S.;
Liu, C.-J .; Chou, Y.-C. Org. Lett. 2001, 3, 3729.
(30) Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J . Angew. Chem.,
Int. Ed. Engl. 2000, 39, 2877.
(5) Kartha, K. P. R.; Field, R. A. Tetrahedron 1997, 53, 11753.
(31) Saravanan, P.; Singh, V. K. Tetrahedron Lett. 1999, 40, 2611.
10.1021/jo030073b CCC: $25.00 © 2003 American Chemical Society
Published on Web 10/09/2003
J . Org. Chem. 2003, 68, 8719-8722
8719