ACS Medicinal Chemistry Letters
Letter
or displace, this water in BRPF2 (Figure S5, Supporting
Information).
Compound 3 was tested in the BROMOscan panel of 35
bromodomain binding assays. Consistent with the data above, it
AUTHOR INFORMATION
■
63246. Fax: +44 1438 763352.
*
7
showed excellent BRPF1 potency (pK = 8.0) and a good
d
Notes
window of selectivity over the BETs and BRPF2/3. In addition,
it was highly selective over other bromodomains tested (Table
S2, Supporting Information).
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
A cellular protein interaction assay measuring the displace-
ment of NanoLuc-tagged BRPF1 bromodomain from Halo-
tagged histone H3.3 was employed to demonstrate cell
permeability and disruption of chromatin binding (Supple-
We thank Jacqui Men
́
dez and Danette Daniels of Promega
Corporation for facilitating NanoBRET assays, and the
DiscoveRx Corp. for BROMOscan screening. Thanks to
Heather Barnett, Mark Bird, and Tony Cooper for chemistry
and discussion, Paul Homes for fermentation, Oxana Polyakova
for BRD4 protein preparation, Richard Upton for NMR
support, Abigail Lucas, Phylicia Dassardo-Joseph, and Helena
Yong for crystallization assistance, and Melanie Leveridge for
help during manuscript preparation.
24
mentary Methods, Supporting Information). Compound 3
exhibited a dose−response curve with micromolar IC , while
50
the less active analogue 5 showed no effect (Figure 6b). When
ABBREVIATIONS
■
BD1, bromodomain; BET, bromodomain and extra-terminal;
BRD1−4, bromodomain containing 1−4; BRPF, bromodomain
and PHD finger-containing; KAc, acetyl-lysine; PWWP, Pro-
Trp-Trp-Pro
REFERENCES
Figure 6. BRPF1 isoform 1 bromodomain NanoBRET dose−response
curves of (A) compound 3 and (B) analogue 5.
■
(1) Nicodeme, E.; Jeffrey, K. L.; Schaefer, U.; Beinke, S.; Dewell, S.;
Chung, C. W.; Chandwani, R.; Marazzi, I.; Wilson, P.; Coste, H.;
White, J.; Kirilovsky, J.; Rice, C. M.; Lora, J. M.; Prinjha, R. K.; Lee, K.;
Tarakhovsky, A. Suppression of inflammation by a synthetic histone
mimic. Nature 2010, 468, 1119−1123.
BRPF1 isoform 2 (containing an insertion in the bromodomain
at Ser660) was used instead, neither compound showed any
effect, consistent with a KAc site competitive mode of action
(
2) Chung, C.; Coste, H.; White, J. H.; Mirguet, O.; Wilde, J.;
(
Figure S6, Supporting Information).
To conclude, in compound 3 we have discovered a potent
Gosmini, R. L.; Delves, C.; Magny, S. M.; Woodward, R.; Hughes, S.
A.; Boursier, E. V.; Flynn, H.; Bouillot, A. M.; Bamborough, P.; Brusq,
J. M.; Gellibert, F. J.; Jones, E. J.; Riou, A. M.; Homes, P.; Martin, S. L.;
Uings, I. J.; Toum, J.; Clement, C. A.; Boullay, A. B.; Grimley, R. L.;
Blandel, F. M.; Prinjha, R. K.; Lee, K.; Kirilovsky, J.; Nicodeme, E.
Discovery and characterization of small molecule inhibitors of the BET
family bromodomains. J. Med. Chem. 2011, 54, 3827−3838.
(3) Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.;
Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.;
Philpott, M.; Munro, S.; McKeown, M. R.; Wang, Y.; Christie, A. L.;
West, N.; Cameron, M. J.; Schwartz, B.; Heightman, T. D.; La, T. N.;
French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E.
Selective inhibition of BET bromodomains. Nature 2010, 468, 1067−
073.
4) McLure, K. G.; Gesner, E. M.; Tsujikawa, L.; Kharenko, O. A.;
Attwell, S.; Campeau, E.; Wasiak, S.; Stein, A.; White, A.; Fontano, E.;
Suto, R. K.; Wong, N. C.; Wagner, G. S.; Hansen, H. C.; Young, P. R.
RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain
antagonist. PLoS One 2013, 8, e83190.
inhibitor of the BRPF1 bromodomain whose properties are
summarized in Table 3. It has excellent selectivity over other
Table 3. Summary of Properties of Compound 3
BRPF1/2/3 pIC50 (TR-FRET)
7.1/5.1/<4.0
<4.3/<4.3
BRD4 BD1/BD2 pIC50 (TR-FRET)
a
BRPF1 NanoBRET pIC50
6.0
BROMOscan selectivity over other
BETs, ∼3 logs
BRPF2/3, ∼2 logs
all others, >2 logs
low (25 μM)
b
bromodomains
1
(
aqueous solubility (CLND)
5
artificial membrane permeability
high (3.5 × 10− cm/s)
a
b
Promega Corp. (Figure S6, Supporting Information). DiscoveRx
Corp. (Table S2, Supporting Information).
(
5) Muller, S.; Knapp, S. Discovery of BET bromodomain inhibitors
and their role in target validation. MedChemComm 2014, 5, 228−296.
6) Chung, C.; Tough, D. Bromodomains: a new target class for
small molecule drug discovery. Drug Discovery Today: Ther. Strategies
012, 9, e111−e120.
bromodomains, is cell permeable, and displaces the BRPF1
bromodomain from Histone H3.3. Future publications will
describe the optimization of this series.
(
2
ASSOCIATED CONTENT
Supporting Information
Synthetic procedures, analytical data, methods, and figures.
Accession Codes
X-ray structures have been deposited in the PDB with accession
codes 4uyd and 4uye. Compound 3 is available from Chemdiv
cat. # C301-5895) and Princeton Biomolecular Research (cat.
OSSK_ 842278).
■
(7) Carlson, S.; Glass, K. C. The MOZ histone acetyltransferase in
epigenetic signaling and disease. J. Cell Physiol 2014, 229, 1571−1574.
(8) Ullah, M.; Pelletier, N.; Xiao, L.; Zhao, S. P.; Wang, K.; Degerny,
C.; Tahmasebi, S.; Cayrou, C.; Doyon, Y.; Goh, S. L.; Champagne, N.;
Cote, J.; Yang, X. J. Molecular architecture of quartet MOZ/MORF
histone acetyltransferase complexes. Mol. Cell. Biol. 2008, 28, 6828−
*
S
6
(
843.
9) Laue, K.; Daujat, S.; Crump, J. G.; Plaster, N.; Roehl, H. H.;
Kimmel, C. B.; Schneider, R.; Hammerschmidt, M. The multidomain
protein Brpf1 binds histones and is required for Hox gene expression
and segmental identity. Development 2008, 135, 1935−1946.
(
#
E
dx.doi.org/10.1021/ml5002932 | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX