58
M. Wojciechowska-Nowak et al. / Journal of Molecular Structure 989 (2011) 51–59
Table 9
uct. Introduction of the N-methyl-thiolactam group to the piperi-
dine ring of anabasine changes its conformation to a half-chair in
which the pyridine ring adopts a pseudo-axial disposition to avoid
steric interactions with the N-methyl substituent. Hence, the rota-
tion about the bond joining the pyridine and piperidine-2-thione
rings may be sterically restricted. Comparison of molecular geom-
etries in the solid state reveals that several CAH bonds present in
the nearest vicinity of the sulfur atom can enhance the electron
delocalization within the thiolactam group. Introduction of the
thiocarbonyl group to the pyrrolidine ring induces a change of
the pyrrolidine ring conformation from folded to nearly planar
and results in an almost perpendicular orientation of this moiety
with respect to the pyridine ring. This in turn creates conditions
favourable for intermolecular stacking interactions.
Torsion angles (°) for N-1-methyl-5-pyridin-3-yl-pyrrol-
idine-2-thione (2).
C(6)AN(1)AC(2)AC(3)
N(1)AC(2)AC(3)AC(4)
N(1)AC(2)AC(3)AC(7)
C(2)AC(3)AC(4)AC(5)
C(7)AC(3)AC(4)AC(5)
C(3)AC(4)AC(5)AC(6)
C(2)AN(1)AC(6)AC(5)
C(4)AC(5)AC(6)AN(1)
C(2)AC(3)AC(7)AN(8)
C(4)AC(3)AC(7)AN(8)
C(2)AC(3)AC(7)AC(11)
C(4)AC(3)AC(7)AC(11)
C(3)AC(7)AN(8)AC(9)
C(11)AC(7)AN(8)AC(9)
C(3)AC(7)AN(8)AC(12)
C(11)AC(7)AN(8)AC(12)
C(12)AN(8)AC(9)AC(10)
C(7)AN(8)AC(9)AC(10)
C(12)AN(8)AC(9)AS(1)
C(7)AN(8)AC(9)AS(1)
N(8)AC(9)AC(10)AC(11)
S(1)AC(9)AC(10)AC(11)
C(9)AC(10)AC(11)AC(7)
N(8)AC(7)AC(11)AC(10)
C(3)AC(7)AC(11)AC(10)
1.2 (7)
0.9 (7)
ꢁ175.7 (4)
ꢁ2.1 (7)
174.6 (4)
1.3 (7)
ꢁ2.1 (7)
0.9 (8)
ꢁ49.0 (5)
134.5 (4)
67.1 (6)
ꢁ109.3 (5)
131.9 (4)
9.6 (5)
ꢁ58.5 (5)
179.2 (4)
ꢁ173.5 (4)
ꢁ4.4 (5)
4.9 (7)
References
[1] M. Wink, Modes of action of alkaloids, in: M.F. Robers, M. Wink (Eds.),
Alkaloids: Biochemistry, Ecology, and Medicinal Applications, Plenum Press,
New York, 1998, pp. 301–325.
[2] L.P. Bush, F.F. Fannin, R.L. Chelvarajan, H.R. Burton, Biosynthesis and
metabolism of nicotine and related alkaloids, in: J.W. Garrod, J. Wahren
(Eds.), Nicotine and Related Alkaloids: Absorbtion, Distribution, Metabolism
and Excretion, Chapman and Hall, London, 1993, pp. 1–30.
[3] A.K. Klyshev, The Biology of Anabasis aphyllaL. Izd. Akad. Nauk Kaz. SSR: Alma-
Ata, 1961 (in Russian).
173.9 (3)
ꢁ2.9 (6)
178.7 (4)
8.5 (6)
ꢁ10.5 (5)
ꢁ132.1 (4)
[4] P. Newhouse, A. Potter, J. Corvin, Drug Dev. Res. 38 (1996) 278.
[5] J.J. Buccafusco, M.A. Prendergast, A.V. Terry Jr., W.J. Jacson, Drug Dev. Res. 38
(1996) 196.
[6] E.D. Levin, Drug Dev. Res. 38 (1996) 188.
[7] R.D. Shytle, A.A. Silver, M.K. Phillipp, B.J. McConville, P.R. Sanberg, Drug Dev.
Res. 38 (1996) 290.
ꢁ49.0 (5)°. The intramolecular separation of the two nitrogen
atoms N1 and N8 measures 4.293 (5) Å. Inspection of the CSD (ver-
sion 5.31 plus 3 three updates) [40] reveals that among 30 com-
pounds containing pyridin-3-yl-pyrrolidine moieties the mutual
disposition of pyrrolidine and pyridine rings varies from 52° to
90°, with the mean value of 77 (1)° while the separation of the
two nitrogen atoms is in the range 4.161–4.963 Å with the mean
value of 4.497 (35) Å. It follows from this comparison that incorpo-
ration of the thiolactam group and connected with it flattening of
the pyrrolidine ring promotes nearly perpendicular arrangement
of the rings and brings the two nitrogen atoms at a distance closer
than the average value. The geometry of the N-methyl-thiolactam
system is comparable with that obtained from the CSD (vide su-
pra). The corresponding values of the C@S and NAC (@S) bonds
are: 1.673 (3) Å (the average of 28 observations) vs. 1.666 (3) Å
(observed in the investigated crystal structure) and 1.329 (2) vs.
1.312 (4) Å, respectively.
In the crystal structure we observe an off-face-to-face (OFF)
stacking interactions between pyridine rings arranged in stacks
along the a-axis (Fig. 7). The centre to centre distance in the stack
is 3.93 (4) Å while the distance from one plane to the centroid of
the other plane is only 3.50 (4) Å. The interplanar angle between
the two interacting rings is 8.63 (4)°, and the angle between the
axis of the stack and the lattice a-direction is 23.7 (5)°. The inter-
acting rings are mutually antiparallel, as indicated by the value
of the angle between N1,C4 vectors in the interacting rings which
amounts to 174.4 (5)°. Worth to note is that the stacking interac-
tions have not been observed in 1, which differs from 2 in that
the relatively flat pyrrolidine-2-thione ring is replaced by the puck-
ered piperidine-2-thione moiety.
[8] E.D. Levin, C.K. Conners, E. Sparrow, S.C. Hinton, D. Erhardt, W.H. Meck, J.E.
Rose, J. March, Psychopharmacology 123 (1996) 55–63.
[9] E.D. Levin, W. Wilson, J.E. Rose, J. McEvoy, J. Neuropsychopharmacol. 15 (1996)
429.
[10] M. Williams, S. Arneric, Exp. Opin. Invest. Drugs 5 (1996) 1035.
[11] P.A. Newhouse, M. Kelton, Pharm. Acta Helv. 74 (2000) 91.
[12] G.K. Lloyd, M. Williams, J. Pharmacol. Exp. Ther. 292 (2000) 461.
[13] M. Debay, W. Glassco, M. Dukat, Drug Dev. Res. 38 (1996) 177.
[14] B. Latli, K. D’Amour, L. Casida, J. Med. Chem. 42 (1999) 2227.
[15] H.J. Aubin, Nicotine et Troubles Neuropsychiatriques, Masson, Paris, 1997.
[16] C.G. Chavdarian, J.I. Seeman, J.B. Wooten, J. Org. Chem. 48 (1983) 492. and
references cited therein.
[17] F.D. King, S.M. Hadley, K.T. Joiner, R.T. Martin, G.J. Sanger, D.M. Smith, P. Smith,
D.H. Turner, E.A. Watts, J. Med. Chem. 36 (1993) 683.
[18] S.J. Laws, J.M. Morgan, L.W. Master, R.F. Borne, G.W. Avione, N.S. Kula, R.J.
Baldessavini, J. Med. Chem. 25 (1982) 213.
[19] Z. Tilyabaev, S.S. Baimirzaev, Kh.Kh. Kushiev, D.N. Dalimov, M.B. Gafurov,
Chem. Nat. Compd. 30 (1994) 57.
[20] N.K. Gusarova, A.V. Artem’ev, S.F. Malysheva, S.V. Fedorov, O.N. Kazheva, G.G.
Alexandrov, O.A. Dyachenko, B.A. Trofimov, Tetrahedron Lett. 51 (2010) 1840.
[21] F.M. Alberti, J.J. Fiol, A. Garcia-Raso, M.T. Torres, A. Terron, M. Barcelo-Oliver,
M.J. Prieto, V. Moreno, E. Molins, Polyhedron 29 (2010) 34.
[22] P. Imming, P. Klaperski, M.T. Stubbs, G. Seitz, D. Gündish, Eur. J. Med. Chem. 36
(2001) 375.
[23] R.M. Acheson, M.J. Ferris, N.M. Sinclair, J.C.S. Perkin Trans. I (1980) 579.
[24] E. Wenkert, E.Ch. Angell, Synth. Commun. 18 (1988) 1331.
[25] CrysAlis CCD Software, Version 1.171 Oxford Diffraction, Oxfordshire, England,
2000.
[26] CrysAlis RED Software, Version 1.171 Oxford Diffraction, Oxfordshire, England,
2000.
[27] G.M. Sheldrick, Acta Cryst. A46 (1990) 467.
[28] G.M. Sheldrick, Acta Cryst. A64 (2008) 112.
[29] H.D. Flack, Acta Cryst. A39 (1983) 876.
ˇ
[30] R. Lukesˆ, A.A. Arojan, J. Kovár, K. Bláha, Collect. Chechoslov. Chem. Commun.
27 (1962) 551.
´
[31] T. Połonski, M.J. Milewska, A. Konitz, M. Gdaniec, Tetrahedron: Asymm. 10
(1999) 2591.
´
´
[32] W. Wysocka, R. Kolanos, T. Borowiak, A. Korzanski, J. Mol. Struct. 474 (1999)
207.
4. Conclusions
[33] T. Borowiak, G. Dutkiewicz, W. Wysocka, R. Kolanos´, J. Mol. Struct. 647 (2003)
287.
[34] A. Orechoff, S. Norkina, Chem. Ber. 65 (1932) 724.
Reported are the synthesis and structure of new thionalogues of
N-methylanabasine and N-methylnicotine obtained by the solvent-
free microwave-accelerated conversion of lactam to the corre-
sponding thioanalogue. The advantages of microwave-expedited
transformation in our case are not only shorter reaction times
and the ease of manipulation but also good yield of a desired prod-
_
´
[35] M. Wojciechowska-Nowak, W. Boczon, U. Rychlewska, B. Warzajtis, J. Mol.
Struct. 840 (2007) 44–52.
[36] A.I. Ishbaev, Kh.A. Aslanov, Kh.Kh. Khaitbaev, M.M. Kurbanova, T. Otargaliev,
Khim. Farm. Zh. 14 (1980) 99.
[37] I.V. Kulakov, O.A. Nurkenov, D.M. Turdybekov, B.T. Ibragimov, S.A. Talipov, Z.M.
Zhambekov, A.A. Ainabaev, K.M. Turdybekov, Chem. Nat. Compd. 45 (2009)
209.