(9) Grittini, C.; Malcomson, M.; Fernando, Q.; Korte, N. Environ.
Sci. Technol. 1995, 29, 2898-2900.
(10) Chuang, F.; Larson, R. A.; Wessman, M. S. Environ. Sci. Technol.
1995, 29, 2460-2463.
(11) Baxter, R. M. Chemosphere 1990, 21, 451-458.
(12) Sokol, R. C.; Kwon, O.; Bethoney, C. M.; Rhee, G. Environ. Sci.
Technol. 1994, 28, 2054-2056.
(13) Perkins, P. S.; Komisar, S. J.; Puhakka, J. A.; Ferguson, J. F. Water
Res. 1994, 28, 2101-2107.
(14) Strathmann, T. J.; Stone, A. T. Abiotic Reduction of Oxime
Carbamate Pesticides by Fe(II): Catalytic Role of Mineral
Surfaces. In Specialty Chemicals in the Environment; Stone,
A. T., Ed.; 219th ACS National Meeting, American Chemical
Society, San Francisco, CA, 2000; American Chemical Society:
Washington, DC, 2000; pp 141-144.
(15) Schwarzenbach, R. P.; Stierli, R.; Lanz, K.; Zeyer, J. Environ. Sci.
Technol. 1990, 24, 1566-1574.
(16) Dunnivant, F. M.; Schwarzenbach, R. P.; Macalady, D. L. Environ.
Sci. Technol. 1992, 26, 2133-2141.
(17) Heijman, C. G.; Grieder, E.; Holliger, C.; Schwarzenbach, R. P.
Environ. Sci. Technol. 1995, 29, 775-783.
(18) Klausen, J.; Tro¨ ber, S. P.; Haderlein, S. B.; Schwarzenbach, R.
P. Environ. Sci. Technol. 1995, 29, 2396-2404.
FIGURE 4. Linear relationship between the reductive capacity of
iron-bearing soil minerals and Fe(II) content. Some error bars are
not shown because of their small values.
(19) Anderson, L. D.; Kent, D. B.; Davis, J. A. Environ. Sci. Technol.
1994, 28, 178-185.
(20) Eary, L. E.; Rai, D. Am. J. Sci. 1989, 289, 180-213.
(21) James, B. R.; Bartlett, R. J. J. Environ. Qual. 1983, 12, 173-176.
(22) Brewster, M. D.; Passmore, R. J. Environ. Prog. 1994, 13, 143-
148.
(23) McGeehan, S. L. J. Environ. Sci. Health, Part A: Environ. Sci.
Eng. Toxic Hazard. Subst. Control 1996, A31, 2319-2336.
(24) Hansen, H. C. B.; Koch, C. B.; Nancke-Krogh, H.; Borggaard, O.
K.; Sørensen, J. Environ. Sci. Technol. 1996, 30, 2053-2056.
(25) Koch, B. C.; Hansen, H. C. B. Adv. GeoEcol. 1997, 30, 373-393.
(26) Charlet, L.; Liger, E.; Gerasimo, P. J. Environ. Eng. 1998, 124,
25-30.
(27) Rusin, P. A.; Quintana, L.; Brainard, J. R.; Strietelmeier, B. A.;
Tait, C. D. Environ. Sci. Technol. 1994, 28, 1686-1690.
(28) Gossett, J. M. In Microbiological Aspects Relevant to Natural
Attenuation of Chlorinated Ethenes; Ward, C. H., Ed.; Symposium
on Natural Attenuation of Chlorinated Organics in Ground
Water; U.S. EPA: Dallas, TX, 1996; pp 10-13.
(29) Fruchter, J. S.; Amonette, J. E.; Cole, C. R. In Situ Redox
Manipulation Field Injection Test Report-Hanford 100-H Area;
DE97050892-XAM; U.S. Department of Energy: Washington,
DC, 1996.
(30) Sivavec, T. M.; Horney, D. P. Preprints of Papers Presented at
the 213th ACS National Meeting, April 13-17, 1997, San
Francisco, CA; American Chemical Society: Washington, DC,
1997; Vol 37 (1), pp 115-117.
(31) Kriegman-King, M. R. Environ. Sci. Technol. 1994, 28, 692-700.
(32) Kriegman-King, M. R.; Reinhard, M. Reduction of Hexa-
chloroethane and Carbon Tetrachloride at Surface of Biotite,
Vermiculite, Pyrite, and Marcasite. In Organic Substances and
Sediments in Water; Baker, R. A., Ed.; Lewis Publishers Inc.:
Chelsea, MI, 1991; Chapter 16, pp 349-364.
to reduce PCE. This result suggests that all Fe(II) in the soil
minerals cannot be used for the reduction of target com-
pounds and that the reactivities of Fe(II) sites are different
and specific to the target compounds. The reductive capaci-
ties of soil minerals predicted by these regression equations
are in good accordance with the measured reductive capaci-
ties of soil minerals except for those of biotite and vermiculite.
The measured reductive capacities of biotite and vermiculite
were overestimated by at least 1 order of magnitude by the
regression equations. This indicates that Fe(II) in these
minerals may not be as reactive as that in other soil minerals
tested. The correlation between the reductive capacity of
soil mineral and Fe(II) content observed in this research
suggests that Fe(II) is an important and reactive compound
in soil minerals for the reductive transformation of target
compounds. It would provide an approximate estimation to
predict and evaluate the potentials of natural reductants that
could be applied to the remedial technologies such as natural
attenuation and in-situ redox manipulation.
Acknowledgments
This research has been funded entirely with funds from the
State of Texas as part of the program of the Texas Hazardous
Waste Research Center. The contents do not necessarily
reflect the views and policies of the sponsor, nor does the
mention of trade names or commercial products constitute
endorsement or recommendation for use.
(33) Erbs, M.; Hansen, H. C. B.; Olsen, C. E. Environ. Sci. Technol.
1999, 33, 307-311.
Supporting Information Available
(34) Nightingale, E. R., Jr. Anal. Chem. 1958, 30, 267-272.
(35) Scott, M. J.; Morgan, J. J. Energetic and conservative properties
of redox systems. In Chemical Modeling of Aqueous Systems II;
Melichior, D. C., Bassett, R. L., Eds.; American Chemical Society
Symposium Series; American Chemical Society: Washington,
DC, 1990; pp 368-378.
Two graphs showing the effect of Cr(VI) contact time on the
reduction of Cr(VI) and reductive transformation of c-DCE
by pyrite. This material is available free of charge via the
Internet at http:/ / pubs.acs.org.
(36) Langmuir, D. Aqueous Environmental Geochemistry; Prentice
Hall: New York, 1997.
(37) Barcelona, M. J.; Holm, T. R. Environ. Sci. Technol. 1991, 25,
1565-1572.
(38) Heron, G.; Christensen, T. H.; Tjell, J. C. Environ. Sci. Technol.
1994, 28, 153-158.
(39) Kozuh, N.; Schara, M. Ann. Chim. 1995, 85, 257-265.
(40) Lee, W.; Batchelor, B.; Schlautman, M. A. Environ. Technol. 2000,
21, 953-963.
(41) Clark, W. M. Oxidation-Reduction Potentials of Organic Systems;
The William & Wilkins Company: Baltimore, MD, 1960.
(42) Taylor, R. M.; Maher, B. A.; Self-P., G. Clay Miner. 1987, 22,
411-422.
(43) Hwang, I. Ph.D. Dissertation, Texas A&M University, College
Station, TX, 2000.
(44) Greenberg, A. E.; Clesceri, L. S.; Eaton, A. D., Eds. Standard
Methods for the Examination of Water and Wastewater, 18th
ed.; APHA, AWWA, WEF: Washington, DC, 1992.
Literature Cited
(1) Tsukano Y. Contam. Hydrol. 1986, 1, 47-63.
(2) Hill, D. W.; McCarty, P. L. J. Water Pollut. Control Fed. 1967, 39,
1259-1444.
(3) Sokol, R. C.; Bethoney, C. M.; Rhee, G. Y. Chemosphere 1994,
29, 1735-1742.
(4) Kriegman-King, M. R. Ph.D. Dissertation, Stanford University,
Stanford, CA, 1993.
(5) Kleopfer, R. D.; Easley, D. M.; Haas, B. B. J.; Deihl, T. G.; Jackson,
D. E.; Wurrey, C. J. Environ. Sci. Technol. 1985, 19, 277-280.
(6) Parsons, F.; Wood, P. R.; DeMarco, J. J. Am. Water Works Assoc.
1984, 76, 56-59.
(7) Butler, E. C. Ph.D. Dissertation, University of Michigan, Ann
Arbor, MI, 1998.
(8) Barbash, J. E. Ph.D. Dissertation, Stanford University, Stanford,
CA, 1993.
9
5 4 0 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 37, NO. 3, 2003