S. K. Pal et al. / Tetrahedron 63 (2007) 6874–6878
6877
different periods of time as shown in Table 1. The crude
Supplementary data
product was purified by column chromatography over neu-
tral aluminum oxide. Elution of column with 2–5% ethyl
acetate in petroleum ether afforded the hexaalkoxytriphenyl-
ene 1, while the elution with 10% ethyl acetate in petroleum
ether furnished the pure monohydroxypentaalkoxytriphenyl-
enes 2.
References and notes
4.3. Synthesis of mono-functionalized triphenylenes
under microwave irradiation
1. For a recent review on DLCs see, e.g.: (a) Kumar, S. Chem. Soc.
Rev. 2006, 35, 83; (b) Donnio, B.; Deschenaux, R.; Bruce, D. W.
Compr. Coord. Chem. 2003, 7, 357; (c) Bushby, R. J.; Lozman,
O. R. Curr. Opin. Colloid Interface Sci. 2002, 7, 343; (d)
Tschierske, C. Annu. Rep. Prog. Chem., Sect. C 2001, 97, 191;
(e) Handbook of Liquid Crystals; Demus, D., Goodby, J., Gray,
G. W., Spiess, H.-W., Vill, V., Eds.; Wiley-VCH: Weinheim,
1998; Vol. 2B; (f) Chandrasekhar, S. Liq. Cryst. 1993, 14, 3;
(g) Chandrasekhar, S.; Kumar, S. Sci. Spectra 1997, 8, 66.
2. Kumar, S. Liq. Cryst. 2004, 31, 1037.
H4TP (330 mg, 0.5 mmol) was taken in a glass vial,
bmin]Br (330 mg, 1.5 mmol) was added, and the mixture
[
was thoroughly mixed and irradiated for 1 min under the de-
sired microwave power. The vial was taken out and once
again kept back for 1 min and this procedure was continued
up to desired time. Then the vial was cooled to room temper-
ature. The mixture was dissolved in dichloromethane and
then passed through a column to isolate the pure product.
3. Kumar, S. Liq. Cryst. 2005, 32, 1089.
4
5
. Chandrasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana
1977, 9, 471.
. Billard, J.; Dubois, J. C.; Tinh, N. H.; Zann, A. Nouv. J. Chim.
1978, 2, 535.
4
.4. Characterization
The monohydroxypentaalkoxytriphenylene derivatives were
characterized from their spectral data, phase behavior, and
by direct comparison with authentic samples. Spectral data
of all the mono-functionalized derivatives with different pe-
ripheral chain lengths were found to be in accordance with
6. Destrade, C.; Mondon, M. C.; Malthete, J. J. Phys. Colloq. C3
1979, 40, 17.
7. Boden, N.; Borner, R. C.; Bushby, R. J.; Cammidge, A. N.;
Jesudason, M. V. Liq. Cryst. 1993, 15, 851.
8. Kumar, S.; Vaeshney, S. K. Liq. Cryst. 1999, 26, 1841.
1
2,13,16,26
the literature data.
Selected data are as follows.
9
. Kumar, S.; Manickam, M. Chem. Commun. 1997, 1615.
1
Compound 2a: H NMR (400 MHz, CDCl ): d 7.96 (s, 1H),
3
10. Kreuder, W.; Ringsdorf, H. Makromol. Chem., Rapid Commun.
1983, 4, 807.
11. Closs, F.; Haussling, L.; Henderson, P.; Ringsdorf, H.;
Schuhmacher, P. J. Chem. Soc., Perkin Trans. 1 1995, 1059.
12. Henderson, P.; Ringsdorf, H.; Schuhmacher, P. Liq. Cryst.
1995, 18, 191.
13. Boden, N.; Bushby, R. J.; Cammidge, A. N.; El-Mansoury, A.;
Martin, P. S.; Lu, Z. J. Mater. Chem. 1999, 9, 1391.
14. Rose, A.; Lugmair, C. G.; Swager, T. M. J. Am. Chem. Soc.
2001, 123, 11298.
7
1
.83 (m, 4H), 7.78 (s, 1H), 5.90 (br s, 1H), 4.24 (m, 10H),
.94 (m, 10H), 1.58 (m, 10H), 1.04 (t, J¼7.2 Hz, 15H);
1
3
C NMR (100 MHz, CDCl ): d 149.0, 148.8, 145.9,
3
1
6
2
1
45.3, 124.0, 123.7, 123.3, 123.0, 107.3, 106.6, 104.4,
9.6, 69.3, 68.8, 31.5, 19.4, 14.0; IR (KBr, all the derivatives
a–2c showed similar spectra): nmax 3545, 2953, 2928, 2858,
616, 1518, 1437, 1389, 1352, 1261, 1171, 1074, 835 cm
UV–vis data (CHCl all the derivatives 2a–2c show similar
3
ꢁ
1
;
,
spectrum): l
276.8, 303.2, 344.0 nm; DSC (peak temper-
max
ꢀ
ature in C and associated enthalpy changes J/g in parenthe-
ses, Cr¼crystals, I¼isotropic): Cr 112.0 (56) I; Elemental
analysis: calculated for C H O : C 75.47, H 8.66%; found:
15. Bushby, R. J.; Lu, Z. Synthesis 2001, 763.
16. Kumar, S.; Manickam, M. Synthesis 1998, 1119.
17. Kumar, S.; Lakshmi, B. Tetrahedron Lett. 2005, 46, 2603.
18. (a) Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T.,
Eds.; Wiley-VCH: Weinheim, 2002; (b) Rogers, R. D.;
Seddon, K. R. Ionic Liquids: Industrial Applications to
Green Chemistry; Rogers, R. D., Seddon, K. R., Eds.; ACS
Symposium Series 818; American Chemical Society:
Washington, DC, 2002; p XIII.
3
8 52 6
C 75.18, H 9.10%.
1
Compound 2b: H NMR (400 MHz, CDCl ): d 7.96 (s,
3
H), 7.83 (m, 4H), 7.78 (s, 1H), 5.90 (br s, 1H), 4.24
m, 10H), 1.94 (m, 10H), 1.50 (m, 20H), 0.98 (m, 15H);
1
(
1
3
C NMR (100 MHz, CDCl ): d 149.2, 149.0, 148.8,
3
1
1
1
45.9, 145.3, 124.0, 123.7, 123.3, 123.0, 107.6, 107.3,
06.5, 104.3, 69.9, 69.6, 69.1, 29.2, 29.0, 28.4, 22.6,
4.1; DSC: Cr 64 (28), Cr 82 (27) I; Elemental analysis: cal-
19. For reviews on applications of ionic liquids in Organic
Synthesis, see: (a) Seddon, K. R. J. Chem. Technol.
Biotechnol. 1997, 68, 351; (b) Welton, T. Chem. Rev. 1999,
99, 2071; (c) Wasserscheid, P.; Keim, W. Angew. Chem., Int.
Ed. 2000, 39, 3772; (d) Sheldon, R. Chem. Commun. 2001,
culated for C H O : C 76.52, H 9.26%; found: C 76.29, H
4
9
3
62
6
.60%.
2
399; (e) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem.
1
Compound 2c: H NMR (400 MHz, CDCl ): d 7.96 (s,
3
Rev. 2002, 102, 3667; (f) Corma, A.; Garcia, H. Chem. Rev.
2003, 103, 4307; (g) Song, C. E. Chem. Commun. 2004, 1033.
20. For recent reviews on MW-assisted Organic Synthesis, see: (a)
Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250; (b)
Wiesbrock, F.; Hoogenboom, R.; Schubert, U. S. Macromol.
Rapid Commun. 2004, 25, 1739; (c) Nuchter, M.;
Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6,
128; (d) Bose, A. K.; Manhas, M. S.; Ganguly, S. N.;
Sharma, A. H.; Banik, B. K. Tetrahedron 2001, 57, 9225; (e)
1
1
(
H), 7.83 (m, 4H), 7.78 (s, 1H), 5.90 (br s, 1H), 4.29 (m,
0H), 1.94 (m, 10H), 1.57 (m, 10H), 1.40 (m, 20H), 0.93
m, 15H); C NMR (100 MHz, CDCl ): d 149.1, 148.8,
3
45.9, 145.3, 124.0, 123.7, 123.2, 123.0, 107.7, 107.5,
07.3, 106.5, 104.4, 69.9, 69.7, 69.2, 31.7, 29.4, 29.3,
5.8, 22.7, 14.1; DSC: Cr 65 (63) I; Elemental analysis:
1
3
1
1
2
calculated for C H O : C 77.38, H 9.74%; found: C
4
8 72 6
7
7.31, H 9.98%.