10.1002/asia.201801676
Chemistry - An Asian Journal
COMMUNICATION
in HeLa cells co-stained with 2M-DPAS and MitoTracker Red
(MTR) after treatment without or with rapamycin. The long
filamentous structures of mitochondria were clearly shown in red
from MTR while the punctate structures of lysosomes were well
portrayed as green spots from 2M-DPAS. Compared with Hela
cells cultured without rapamycin (Figure 5A-F) and with
rapamycin (Figure 5G-L) (50 μg/mL) to induce mitophagy,
pronounced changes had taken place in the quantity and spatial
distribution of lysosomes and the morphology of mitochondria (Fig.
5). The network structures of mitochondria appeared broken and
punctate, and numerous lysosomes could be seen distributed
widely in the three-dimensional layer of one mitochondrion. In
addition, the coincidence degree between lysosomes and
mitochondria increased markedly. Therefore, the process of
mitophagy was effectively monitored in the presence of 2M-DPAS
and MTR, further demonstrating the superiority of 2M-DPAS in
monitoring the dynamics of lysosomes.
(201804010218), Science and Technology Plan of Shenzhen
(JCYJ20160428150429072 and JCYJ20160229205601482), the
Innovation and Technology Commission of Hong Kong (ITC-
CNERC14S01), and the Fundamental Research Funds for the
Central Universities (2015ZY013, 2017JQ013 and 2017B0036).
Conflicts of interests
There are no conflicts to declare.
Keywords: Lysosomes • Aggregation-induced emission •
Monitoring • Autophagy • Phagocytosis of macromolecules
[1]
a) F. Appelmans, R. Wattiaux, C. De Duve, Biochem. J., 1955, 59, 438-
447; b) C. de Duve, Amer. Physiol. Soc., 1959.
P. Saftig, B. Schroder, J. Blanz, Biochem. Soc. Trans., 2010, 38, 1420-
1423.
[2]
Apart from digesting metabolic organelles such as
mitochondria that have been sequestered by autophagy,
lysosomes also serve to digest extracellular macromolecules that
have been internalized by endocytosis. We have demonstrated
that 2M-DPAS can monitor the process of autophagy and
mitophagy, but can 2M-DPAS monitor the process of digesting
extracellular macromolecules in the lysosomes? One of the
pathological hallmarks of Alzheimer’s disease (AD) is the
formation of senile plaques composed primarily of aggregated
amyloid β peptides (Aβ) in the brain. The Aβ aggregation is widely
considered to have a causal role in the development of AD.18
Therefore, the ability of 2M-DPAS to monitor lysosomal
phagocytosis of macromolecules was tested using HMCs (human
meningeal cells) and FAM-Aβ (FAM-labelled Aβ). As shown in
Figure 6 (A–C, G–I), 1 h following FAM-Aβ treatment, there was
no overlap between the green light emitted by FAM-Aβ and the
red light from lysosomes labeled with 2M-DPAS or LTR, indicating
that the passage of FAM-Aβ into lysosomes via endocytosis had
not occurred. However, in Figure 6 (D–F, J–L), 24 h after HMCs
were treated with FAM-Aβ, several yellow spots were observed
where lysosomes were labeled with 2M-DPAS or LTR, suggesting
that FAM-Aβ had been phagocytosed by lysosomes labeled with
2M-DPAS or LTR. Therefore, 2M-DPAS can also monitor the
lysosomal phagocytosis of macromolecules, while showing an
advantage over LTR which requires a long time of laser irradiation.
2M-DPAS may be used to study the lysosomal processes in AD
given the phagocytotic role of lysosomes in AD.
[3]
[4]
[5]
T. Lübke, P. Lobel and D. E. Sleat, Biochimica et Biophysica (BBA)-Mol
Cell Res., 2009, 1793, 625-635.
a) D. F. Bainton, J. Cell Biol., 1981, 91, 66s-76s; b) K. Okamoto, J. Cell
Biol., 2014, 205, 435-445.
a) V. I. Korolchuk, S. Saiki, M. Lichtenberg, F. H. Siddiqi, E. A. Roberts,
S. Imarisio, L. Jahreiss, S. Sarkar, M. Futter, F. M. Menzies, C. J. O’Kane,
V. Deretic, D. C. Rubinsztein. Nat Cell Biol, 2011, 13, 453–460; b) T.
Kirkegaard, M. Jäättelä, BBA-Mol Cell Res., 2009, 1793, 746-754.
[6]
a) Q. Wan, S. Chen, W. Shi, L. Li, H. Ma, Angew Chem. Int. Ed., 2014,
53, 11096-11100; b) X. F. Zhang, T. Zhang, S. L. Shen, J. Y. Miao, B. X.
Zhao, J Mater. Chem. B, 2015, 3, 3260-3266; c) W. J. Wang, P. Ning, Q.
Wang, W. Zhang, J. Jiang, Y. Feng, X. M. Meng, J. Mater. Chem. B, 2018,
6, 1764-1770.
[7]
[8]
N. B. Finter, J. Gen. Virol., 1969, 5, 419-427.
A. C. Allison, M. R. Young, Lysosomes in biology and pathology, Vol. 2,
Elsevier, p. 600-628.
[9]
a) C. Svendsen, D. J. Spurgeon, P. K. Hankard, Ecotoxicol. Environ. Saf.,
2004, 57, 20-29; b) A. Pierzyńska‐Mach, P. A. Janowski, J. W. Dobrucki,
Cytom. Part A, 2014, 85, 729-737.
[10]
[11]
Z. Li, Y. Song, Y. Yang, L. Yang, X. Huang, J. Han, S. Han, Chem. Sci.,
2012, 3, 2941-2948.
a) J. C. Jiang, X. H. Tian, C. Z. Xu, S. X. Wang, Y. Feng, M. Chen, H. Z.
Yu, M. Z. zhu, X. M. Meng, Chem. Commun., 2017, 53, 3645-3648; b) L.
L. Hou, P. Ning, Y. Feng, Y. Q. Ding, L. Bai, L. Li, H. Z. Yu, X. M. Meng,
Anal. Chem., 2018, 90, 7122-7126; c) W. J. Wang, P. Ning, Q. Wang,
W. Zhang, J. Jiang, Y. Feng, X. M. Meng, J. Mater. Chem. B, 2018, 6,
1764-1770.
[12]
[13]
a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok,
X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun., 2001, 18, 1740-
1741; b) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev., 2011, 40,
5361-5388; c) J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z.
Tang, Adv. Mater., 2014, 26, 5429-5479; d) J. Mei, N. L. C. Leung, R. T.
K. Kwok, J. Y. W. Lam and B. Z. Tang, Chem. Rev., 2015, 115, 11718-
11940.
In summary, we have reported a novel fluorescent probe 2M-
DPAS with AIE characteristics for specific lysosomal imaging. Its
good biocompatibility, high selectivity, bright emission, pH-
independence and excellent photostability enable continuous
monitoring of the dynamic changes of lysosomes in real time. This
probe has been demonstrated to effectively monitor and track the
processes of autophagy, mitophagy and phagocytosis of
macromolecules in lysosomes in real time. Importantly, 2M-DPAS
could be a promising tool in the study of lysosome-related
processes in Alzheimer's disease.
a) W. Qin, P. Zhang, H. Li, J. W. Y. Lam, Y. Cai, R. T. K. Kwok, J. Qian,
W. Zheng, B. Z. Tang, Chem. Sci., 2018, 9, 2705-2710; b) M. T. Gabr, F.
C. Pigge, Dalton T., 2018, 47, 2079-2085.
[14] Y. Hong, J. W. Lam, B. Z. Tang, Aggregation-induced emission, John
Wiley & Sons Inc, 2014.
[15]
a) W. Chen, C. Gao, X. Liu, F. Liu, F. Wang, L. J. Tang, J. H. Jiang, anal.
Chem., 2018, 90, 8736-8741; b) M. Grossi, M. Morgunova, S. Cheung,
D. Scholz, E. Conroy, M. Terrile, A. Panarella, J. C. Simpson, W. M.
Gallagher, D. F. O‘Shea. Nat. Commun., 2016, 7, 10855-10868; c) W. C.
Zhu, X. J. Zheng, Y. Huang, Z. Y. Lu, H. Ai, Sci. China Chem., 2018, 61,
483-489; d) Y. B. Zhou, H. X. Liu, N. Zhao, Z. M. Wang, M. Z. Michael, N.
Xie, B. Z. Tang, Y. H. Tang, Sci. China Chem., 2018, 61, 892-897; e) K.
P. Prasad, A. Than, N. Li, M. A. SK, H. W. Duan, K. Y. Pu, X. T. Zheng, P.
Chen, Mater. Chem. Front., 2017, 1, 152-157; f) C. W. T. Leung, Z. M.
Wang, E. G. Zhao, Y. N. Hong, S. J. Chen, R. T. K. Kwok, A. C. S. Leung,
R. We, B. S. Li, J. W. Y. Lam, B. Z. Tang, Adv. Healthcare Mater., 2016,
5, 427-431; g) M. Gao, Q. L. Hu, G. X. Feng, B. Z. Tang, B. Liu, J. Mater.
Chem. B, 2014, 2, 3438-3442; h) F. Hu, B. Liu, Org. Biomol. Chem., 2016,
14, 9931-9944.
Acknowledgements
This work is financially supported by National Natural
Science Foundation of China (21788102, 51673118, 81472401
and 51603127), Science & Technology Program of Guangzhou
[16] Z. Wang, C. Gui, E. Zhao, J. Wang, X. Li, A. Qin, Z. Zhao, Z. Yu and
B. Tang, ACS Appl. Mater. Interfaces, 2016, 8, 10193-10200.
[17]
S. Wullschleger, R. Loewith, M. N. Hall, Cell, 2006, 124, 471-484
This article is protected by copyright. All rights reserved.