nicotinic acetylcholine receptor subunits in the cerebral cortex in
Alzheimer's disease: histotopographical correlation with amyloid
plaques and hyperphosphorylated-tau protein, Eur J Neurosci 11 (1999)
Dannals, A.G. Horti, Human brain imaging of alpha7 nAChR with
[(18)F]ASEM: a new PET radiotracer for neuropsychiatry and
determination of drug occupancy, Mol. Imaging Biol. 16 (2014) 730-
738.
ACCEPTED MANUSCRIPT
2
551-2565.
[
[
12] M.S.H. Thomsen, Henrik H.; Timmerman, Daniel B.; Mikkelsen, Jens
D., Cognitive improvement by activation of α7 nicotinic acetylcholine
receptors: from animal models to human pathophysiology, Curr. Pharm.
Des. 16 (2010) 323-343.
13] a.K.H. Jun Toyohara, α7 Nicotinic receptor agonists: potential
therapeutic drugs for treatment of cognitive impairments in
schizophrenia and Alzheimer’s disease, The Open Medicinal Chemistry
Journal 4 (2010) 37-56.
[27] A.T.L. Hillmer, Songye; Zheng, Ming-Qiang; Scheunemann, Matthias;
Lin, Shu-fei; Nabulsi, Nabeel; Holden, Daniel; Pracitto, Richard;
Labaree, David; Ropchan, Jim; Teodoro, Rodrigo; Deuther-Conrad,
Winnie; Esterlis, Irina; Cosgrove, Kelly P.; Brust, Peter; Carson, Richard
E.; Huang, Yiyun, PET imaging of α7 nicotinic acetylcholine receptors:
a comparative study of [18F]ASEM and [18F]DBT-10 in nonhuman
primates, and further evaluation of [18F]ASEM in humans, Eur. J. Nucl.
Med. Mol. Imaging 44 (2017) 1042-1050.
[
[
14] A.A. Mazurov, J.D. Speake, D. Yohannes, Discovery and development of
alpha7 nicotinic acetylcholine receptor modulators, J. Med. Chem. 54
[28] C.J. O'Donnell, B.N. Rogers, B.S. Bronk, D.K. Bryce, J.W. Coe, K.K.
Cook, A.J. Duplantier, E. Evrard, M. Hajos, W.E. Hoffmann, R.S. Hurst,
N. Maklad, R.J. Mather, S. McLean, F.M. Nedza, B.T. O'Neill, L. Peng,
W. Qian, M.M. Rottas, S.B. Sands, A.W. Schmidt, A.V. Shrikhande,
D.K. Spracklin, D.F. Wong, A. Zhang, L. Zhang, Discovery of 4-(5-
methyloxazolo[4,5-b]pyridin-2-yl)-1,4-diazabicyclo[3.2.2]nonane (CP-
810,123), a novel alpha 7 nicotinic acetylcholine receptor agonist for the
treatment of cognitive disorders in schizophrenia: synthesis, SAR
development, and in vivo efficacy in cognition models, J. Med. Chem.
53 (2010) 1222-1237.
(2011) 7943-7961.
15] C.A. Briggs, D.J. Anderson, J.D. Brioni, J.J. Buccafusco, M.J. Buckley,
J.E. Campbell, M.W. Decker, D. Donnelly-Roberts, R.L. Elliott, M.
Gopalakrishnan, M.W. Holladay, Y.H. Hui, W.J. Jackson, D.J. Kim, K.C.
Marsh, A. O'Neill, M.A. Prendergast, K.B. Ryther, J.P. Sullivan, S.P.
Arneric, Functional characterization of the novel neuronal nicotinic
acetylcholine receptor ligand GTS-21 in vitro and in vivo, Pharmacol.
Biochem. Behav. 57 (1997) 231-241.
[
[
16] G. Mullen, J. Napier, M. Balestra, T. DeCory, G. Hale, J. Macor, R.
Mack, J. Loch, E. Wu, A. Kover, P. Verhoest, A. Sampognaro, E.
Phillips, Y.Y. Zhu, R. Murray, R. Griffith, J. Blosser, D. Gurley, A.
Machulskis, J. Zongrone, A. Rosen, J. Gordon, (-)-spiro[1-
[29] M.R. Schrimpf, K.B. Sippy, C.A. Briggs, D.J. Anderson, T. Li, J. Ji, J.M.
Frost, C.S. Surowy, W.H. Bunnelle, M. Gopalakrishnan, M.D. Meyer,
SAR of alpha7 nicotinic receptor agonists derived from tilorone:
exploration of a novel nicotinic pharmacophore, Bioorg. Med. Chem.
Lett. 22 (2012) 1633-1638.
[30] A.Q. Wu, X. Li, Q.Q. Xue, Y.J. Liu, X. Lu, X. Yan, H.B. Zhang, Radio
synthesis and in vivo evaluation of two alpha 7 nAChRs radioligands: [I-
125]CAIPE and [I-125]IPPU, J. Radioanal. Nucl. Chem. 307 (2016)
1345-1351.
[31] W. Huan, W. Aiqin, L. Jianping, X. Qianqian, L. Xia, Y. Lei, F. Yu, Z.
Huabei, Radiosynthesis and in-vivo evaluation of [125I]IBT: a single-
photon emission computed tomography radiotracer for alpha7-nicotinic
acetylcholine receptor imaging, Nucl. Med. Commun. 38 (2017) 683-
693.
[32] H.W. H.Wang, S.X.Wang, S.Y.Liang, J.P.Liu, H.B.Zhang, A novel
fluorenone derivative labeled with [18F] as α7-Nicotinic Acetylcholine
Receptor PET/CT Imaging Agents, in: the 13th Radiopharmaceutical
and labeled Compound Academic Exchanges meeting
azabicyclo[2.2.2]octane-3,5 '-oxazolidin-2 '-one], a conformationally
restricted analogue of acetylcholine, is a highly selective full agonist at
the alpha 7 nicotinic acetylcholine receptor, J. Med. Chem. 43 (2000)
4
045-4050.
17] B. Biton, O.E. Bergis, F. Galli, A. Nedelec, A.W. Lochead, S. Jegham, D.
Godet, C. Lanneau, R. Santamaria, F. Chesney, J. Leonardon, P. Granger,
M.W. Debono, G.A. Bohme, F. Sgard, F. Besnard, D. Graham, A. Coste,
A. Oblin, O. Curet, X. Vige, C. Voltz, L. Rouquier, J. Souilhac, V.
Santucci, C. Gueudet, D. Francon, R. Steinberg, G. Griebel, F. Oury-
Donat, P. George, P. Avenet, B. Scatton, SSR180711, a novel selective
alpha7 nicotinic receptor partial agonist: (1) binding and functional
profile, Neuropsychopharmacology 32 (2007) 1-16.
18] A.A. Mazurov, D.C. Kombo, T.A. Hauser, L. Miao, G. Dull, J.F. Genus,
N.B. Fedorov, L. Benson, S. Sidach, Y. Xiao, P.S. Hammond, J.W.
James, C.H. Miller, D. Yohannes, Discovery of (2S,3R)-N-[2-(pyridin-3-
ylmethyl)-1-azabicyclo[2.2.2]oct-3-yl]benzo[b]furan-2-car boxamide
[
[
Beijing, China, 2016, pp. 30.
[33] A.M. Brown, Drugs, hERG and sudden death, Cell Calcium 35 (2004)
543-547.
(
TC-5619), a selective alpha7 nicotinic acetylcholine receptor agonist,
for the treatment of cognitive disorders, J. Med. Chem. 55 (2012) 9793-
809.
[34] P.W. Miller, N.J. Long, R. Vilar, A.D. Gee, Synthesis of 11C, 18F, 15O,
and 13N radiolabels for positron emission tomography, Angew. Chem.
Int. Ed. Engl. 47 (2008) 8998-9033.
[35] M. Laruelle, M. Slifstein, Y. Huang, Relationships between radiotracer
properties and image quality in molecular imaging of the brain with
positron emission tomography, Mol. Imaging Biol. 5 (2003) 363-375.
[36] S. Patel, R. Gibson, In vivo site-directed radiotracers: a mini-review,
Nucl. Med. Biol. 35 (2008) 805-815.
[37] T.K. M, S.K. S, S.K. J, H.S. K, Y.H. H, K.W. Spencer, G.J. R, H.
Tayyaba, P.B. W, In vivo quantification of tumor receptor binding
potential with dual-reporter molecular imaging, Mol. Imaging Biol. 14
(2011) 584-592.
[38] C. Gotti, F. Clementi, A. Fornari, A. Gaimarri, S. Guiducci, I. Manfredi,
M. Moretti, P. Pedrazzi, L. Pucci, M. Zoli, Structural and functional
diversity of native brain neuronal nicotinic receptors, Biochem
Pharmacol 78 (2009) 703-711.
9
19] J. Cook, F.C. Zusi, I.M. McDonald, D. King, M.D. Hill, C. Iwuagwu,
R.A. Mate, H.Q. Fang, R.L. Zhao, B. Wang, J. Cutrone, B.Q. Ma, Q.
Gao, R.J. Knox, M. Matchett, L. Gallagher, M. Ferrante, D. Post-
Munson, T. Molski, A. Easton, R. Miller, K. Jones, S. Digavalli, F.
Healy, K. Lentz, Y. Benitex, W. Clarke, J. Natale, J.A. Siuciak, N.
Lodge, R. Zaczek, R. Denton, D. Morgan, L.J. Bristow, J.E. Macor, R.E.
Olson, Design and Synthesis of a New Series of 4-Heteroarylamino-1 '-
azaspiro[oxazole-5,3 '-bicyclo[2.2.2]octanes as alpha 7 Nicotinic
Receptor Agonists. 1. Development of Pharmacophore and Early
Structure - Activity Relationship, J. Med. Chem. 59 (2016) 11171-11181.
20] J. Toyohara, J. Wu, K. Hashimoto, Recent development of radioligands
for imaging alpha7 nicotinic acetylcholine receptors in the brain, Curr.
Top. Med. Chem. 10 (2010) 1544-1557.
21] P. Brust, D. Peters, W. Deuther-Conrad, Development of radioligands for
the imaging of alpha7 nicotinic acetylcholine receptors with positron
emission tomography, Curr. Drug Targets 13 (2012) 594-601.
22] M.G. Pomper, E. Phillips, H. Fan, D.J. McCarthy, R.A. Keith, J.C.
Gordon, U. Scheffel, R.F. Dannals, J.L. Musachio, Synthesis and
biodistribution of radiolabeled alpha(7) nicotinic acetylcholine receptor
ligands, J. Nucl. Med. 46 (2005) 326-334.
[
[
[
[39] A. Karlin, M.H. Akabas, Toward a structural basis for the function of
nicotinic acetylcholine receptors and their cousins, Neuron 15 (1999)
1231-1244.
[40] X. Zhang, J.B. Han, P.F. Li, X. Ji, Z. Zhang, Improved, Highly Efficient,
and Green Synthesis of Bromofluorenones and Nitrofluorenones in
Water, Synth. Commun. 39 (2009) 3804-3815.
[
23] K.N. Hashimoto, S.; Ohba, H.; Matsuo, M.; Kobashi,, M.I. T.; Takahagi,
M.; Kitashoji, T.; Tsukada, H. , [11C]CHIBA-
001 as a novel PET ligand for alpha7 nicotinic receptors in the brain:
[41] M.R.S. Schrimpf, Kevin B.; Ji, Jianguo; Li, Tao; Frost, Jennifer M.;
Briggs, Clark A.; Bunnelle, William H., Preparation of amino-substituted
tricyclic derivatives as modulators of α7 nicotinic receptors and methods
of use, in, USA, 2005.
1
a PET study in conscious monkeys, PLoS One 3 (2008) e3231.
[
[
[
24] W.F. Deuther-Conrad, S.; Hiller, A.; Becker, G.; Cumming, P.; Xiong, G.;
Funke, U.; Sabri, O.; Peters, D.; Brust, P., Assessment of alpha7
nicotinic acetylcholine receptor availability in juvenile pig brain with
[42] S. Gemma, C. Camodeca, M. Brindisi, S. Brogi, G. Kukreja, S. Kunjir, E.
Gabellieri, L. Lucantoni, A. Habluetzel, D. Taramelli, N. Basilico, R.
Gualdani, F. Tadini-Buoninsegni, G. Bartolommei, M.R. Moncelli, R.E.
Martin, R.L. Summers, S. Lamponi, L. Savini, I. Fiorini, M. Valoti, E.
Novellino, G. Campiani, S. Butini, Mimicking the intramolecular
hydrogen bond: synthesis, biological evaluation, and molecular
modeling of benzoxazines and quinazolines as potential antimalarial
agents, J. Med. Chem. 55 (2012) 10387-10404.
[
18F]NS10743, Eur. J. Nucl. Med. Mol. Imaging 38 (2011).
25] Y. Gao, K.J. Kellar, R.P. Yasuda, T. Tran, Y. Xiao, R.F. Dannals, A.G.
Horti, Derivatives of dibenzothiophene for positron emission
tomography imaging of alpha7-nicotinic acetylcholine receptors, J. Med.
Chem. 56 (2013) 7574-7589.
26] D.F. Wong, H. Kuwabara, M. Pomper, D.P. Holt, J.R. Brasic, N. George,
B. Frolov, W. Willis, Y. Gao, H. Valentine, A. Nandi, L. Gapasin, R.F.
[43] H.E. Bronstein, N. Choi, L.T. Scott, Practical synthesis of an open
geodesic polyarene with a fullerene-type 6 : 6-double bond at the center:
1
2