Journal of the American Chemical Society
Page 8 of 10
We thank Prof. B. Mao, Prof. J. Yan, and Y. Peng for the help in
AFM test and data analysis. This work was supported by
National Natural Science Foundation of China (21771148,
(17) Mastarone, D. J.; Harrison, V. S.; Eckermann, A. L.; Parigi,
G.; Luchinat, C.; Meade, T. J., A modular system for the synthesis of
multiplexed magnetic resonance probes. J. Am. Chem. Soc. 2011,
33, 5329.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
1
2
1602186, 21521004, and 81430041), IRT_17R66, the Natural
(
18) Debroye, E.; Parac-Vogt, T. N., Towards polymetallic
Science Foundation of Fujian Province of China (2018J01011),
and Fundamental Research Funds for the Central Universities
lanthanide complexes as dual contrast agents for magnetic
resonance and optical imaging. Chem. Soc. Rev. 2014, 43, 8178.
(19) Lee, D. Y.; Kim, J. Y.; Lee, Y.; Lee, S.; Miao, W.; Kim, H. S.;
Min, J. J.; Jon, S., Black pigment gallstone inspired platinum-
chelated bilirubin nanoparticles for combined photoacoustic
imaging and photothermal therapy of cancers. Angew. Chem. Int.
Ed. 2017, 56, 13684.
(20) Shao, S.; Zhou, Q.; Si, J.; Tang, J.; Liu, X.; Wang, M.; Gao, J.;
Wang, K.; Xu, R.; Shen, Y., A non-cytotoxic dendrimer with innate
and potent anticancer and anti-metastatic activities. Nat. Biomed.
Eng. 2017, 1, 745.
(21) Chen, J.; Wang, J.; Li, K.; Wang, Y.; Gruebele, M.; Ferguson,
A. L.; Zimmerman, S. C., Polymeric "clickase" accelerates the copper
click reaction of small molecules, proteins, and cells. J. Am. Chem.
Soc. 2019, 141, 9693.
(22) Lan, G.; Ni, K.; Veroneau, S. S.; Feng, X.; Nash, G. T.; Luo, T.;
Xu, Z.; Lin, W., Titanium-based nanoscale metal-organic framework
for type I photodynamic therapy. J. Am. Chem. Soc. 2019, 141, 4204.
(23) Allen, T. M.; Cullis, P. R., Drug delivery systems: entering
the mainstream. Science 2004, 303, 1818.
(
20720170020 and 20720180033).
REFERENCES
(
1) Wahsner, J.; Gale, E. M.; Rodríguez-Rodríguez, A.; Caravan,
P., Chemistry of MRI contrast agents: current challenges and new
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
frontiers. Chem. Rev. 2019, 119, 957.
(
2)
Muthu,
M.
S.;
Wilson,
B.,
Multifunctional
radionanomedicine: a novel nanoplatform for cancer imaging and
therapy. Nanomedicine 2010, 5, 169.
(
3) Kelland, L., The resurgence of platinum-based cancer
chemotherapy. Nat. Rev. Cancer 2007, 7, 573.
(4) Mjos, K. D.; Orvig, C., Metallodrugs in medicinal inorganic
chemistry. Chem. Rev. 2014, 114, 4540.
(
5) Port, M.; Idée, J.-M.; Medina, C.; Robic, C.; Sabatou, M.; Corot,
C., Efficiency, thermodynamic and kinetic stability of marketed
gadolinium chelates and their possible clinical consequences: a
critical review. BioMetals 2008, 21, 469.
(6) Lima, L. M.; Beyler, M.; Oukhatar, F.; Le Saec, P.; Faivre-
Chauvet, A.; Platas-Iglesias, C.; Delgado, R.; Tripier, R., H
2
Me-do2pa:
(24) Aime, S.; Castelli, D. D.; Crich, S. G.; Gianolio, E.; Terreno,
E., Pushing the sensitivity envelope of lanthanide-based magnetic
resonance imaging (MRI) contrast agents for molecular imaging
applications. Acc. Chem. Res. 2009, 42, 822.
nat 3+
213 3+
an attractive chelator with fast, stable and inert Bi and Bi
complexation for potential a-radioimmunotherapy applications.
Chem. Commun. 2014, 50, 12371.
(7) Vanasschen, C.; Molnar, E.; Tircso, G.; Kalman, F. K.; Toth,
E.; Brandt, M.; Coenen, H. H.; Neumaier, B., Novel CDTA-based,
bifunctional chelators for stable and inert Mn(II) complexation:
synthesis and physicochemical characterization. Inorg. Chem.
(25) Smith, B. R.; Gambhir, S. S., Nanomaterials for in vivo
imaging. Chem. Rev. 2017, 117, 901.
(26) Sorensen, T. J.; Faulkner, S., Multimetallic lanthanide
complexes: using kinetic control to define complex multimetallic
arrays. Acc. Chem. Res. 2018, 51, 2493.
(27) Perego, P.; Caserini, C.; Gatti, L.; Carenini, N.; Romanelli,
S.; Supino, R.; Colangelo, D.; Viano, I.; Leone, R.; Spinelli, S.; Pezzoni,
G.; Manzotti, C.; Farrell, N.; Zunino, F., A novel trinuclear platinum
complex overcomes cisplatin resistance in an osteosarcoma cell
system. Mol. Pharmacol. 1999, 55, 528.
(28) Manzotti, C.; Pratesi, G.; Menta, E.; Di Domenico, R.;
Cavalletti, E.; Fiebig, H. H.; Kelland, L. R.; Farrell, N.; Polizzi, D.;
Supino, R.; Pezzoni, G.; Zunino, F., BBR 3464: a novel triplatinum
complex, exhibiting a preclinical profile of antitumor efficacy
different from cisplatin. Clin. Cancer Res. 2000, 6, 2626.
(29) Wheate, N., Multi-nuclear platinum complexes as anti-
cancer drugs. Coord. Chem. Rev. 2003, 241, 133.
(30) Palermo, G.; Cavalli, A.; Klein, M. L.; Alfonso-Prieto, M.; Dal
Peraro, M.; De Vivo, M., Catalytic metal ions and enzymatic
processing of DNA and RNA. Acc. Chem. Res. 2015, 48, 220.
(31) Liu, C.; Wang, M.; Zhang, T.; Sun, H., DNA hydrolysis
promoted by di- and multi-nuclear metal complexes. Coord. Chem.
Rev. 2004, 248, 147.
(32) Artero, V.; Berggren, G.; Atta, M.; Caserta, G.; Roy, S.;
Pecqueur, L.; Fontecave, M., From enzyme maturation to synthetic
chemistry: the case of hydrogenases. Acc. Chem. Res. 2015, 48,
2380.
2
017, 56, 7746.
(
8) Dai, L.; Jones, C. M.; Chan, W. T. K.; Pham, T. A.; Ling, X.; Gale,
E. M.; Rotile, N. J.; Tai, W. C.; Anderson, C. J.; Caravan, P.; Law, G. L.,
Chiral DOTA chelators as an improved platform for biomedical
imaging and therapy applications. Nat. Commun. 2018, 9, 857.
(
9) Ma, L.; Wang, N.; Ma, R.; Li, C.; Xu, Z.; Tse, M. K.; Zhu, G.,
Monochalcoplatin: an actively transported, quickly reducible, and
IV
highly potent Pt anticancer prodrug. Angew. Chem. Int. Ed. 2018,
57, 9098.
(10) Clough, T. J.; Jiang, L.; Wong, K. L.; Long, N. J., Ligand design
strategies to increase stability of gadolinium-based magnetic
resonance imaging contrast agents. Nat. Commun. 2019, 10, 1420.
(
11) Stasiuk, G. J.; Long, N. J., The ubiquitous DOTA and its
derivatives: the impact of 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid on biomedical imaging. Chem. Commun.
2013, 49, 2732.
(
12) Wang, L.; Zhu, X.; Tang, X.; Wu, C.; Zhou, Z.; Sun, C.; Deng,
S.-L.; Ai, H.; Gao, J., A multiple gadolinium complex decorated
fullerene as a highly sensitive T contrast agent. Chem. Commun.
015, 51, 4390.
(13) Wang, L.; Lin, H.; Ma, L.; Sun, C.; Huang, J.; Li, A.; Zhao, T.;
Chen, Z.; Gao, J., Geometrical confinement directed albumin-based
nanoprobes as enhanced T contrast agents for tumor imaging. J.
Mater. Chem. B 2017, 5, 8004.
14) Wang, L.; Lin, H.; Chi, X.; Sun, C.; Huang, J.; Tang, X.; Chen,
1
2
1
(33) Thanneeru, S.; Milazzo, N.; Lopes, A.; Wei, Z.; Angeles-
Boza, A. M.; He, J., Synthetic polymers to promote cooperative Cu
(
H.; Luo, X.; Yin, Z.; Gao, J., A self-assembled biocompatible
nanoplatform for multimodal MR/fluorescence imaging assisted
photothermal therapy and prognosis analysis. Small 2018, 14,
activity for O activation: poly vs mono. J. Am. Chem. Soc. 2019, 141,
2
4252.
(34) Lee, C. C.; MacKay, J. A.; Frechet, J. M.; Szoka, F. C.,
Designing dendrimers for biological applications. Nat. Biotechnol.
2005, 23, 1517.
(35) Tomalia, D. A.; Khanna, S. N., A systematic framework and
nanoperiodic concept for unifying nanoscience: hard/soft
nanoelements, superatoms, meta-atoms, new emerging properties,
periodic property patterns, and predictive mendeleev-like
nanoperiodic tables. Chem. Rev. 2016, 116, 2705.
1
801612.
15) Yang, Z.; Lin, H.; Huang, J.; Li, A.; Sun, C.; Richmond, J.; Gao,
(
J., A gadolinium-complex-based theranostic prodrug for in vivo
tumour-targeted magnetic resonance imaging and therapy. Chem.
Commun. 2019, 55, 4546.
(
16) Long, N.; Wong, W.-T., The chemistry of molecular imaging.
John Wiley & Sons Inc.: Hoboken, 2014.
ACS Paragon Plus Environment