that cyclopropanes are among the most thoroughly investi-
gated target molecules in PET chemistry.3,7,8
Scheme 2
The regioselectivity of bicyclo[m.1.0]alkane containing
cyclopropanol radical cation ring-opening, viz., internal-bond
cleavage vs external-bond cleavage (Scheme 1), is an
Scheme 1
that radical cations, formed as intermediates in these SET
oxidation reactions, undergo regioselective cleavage of the
internal-bond of the cyclopropane ring.
Next, the redox sensitization method was chosen to explore
the PET reactivity of these substrates. This method employs
9
interesting mechanistic and synthetic issue. In this Letter,
we report the preliminary results of a study probing the
factors that govern the reaction pathways followed in PET
reactions of cyclopropyl silyl ethers embedded in bicyclo-
9
,10-dicyanoanthracene (DCA) and biphenyl (BP) to generate
11,12
the biphenyl radical cation, which acts as the hole catalyst.
By using DCA (0.1 equiv) and BP (1.2 equiv) in MeCN
with irradiation (λ > 340 nm) for 8 h, 1a was quantitatively
recoverd. In contrast, these conditions promoted PET reaction
of 1b to form the unexpected product 4 (58%) and a small
amount of 2b (4%) at 73% conversion (Scheme 3). Surpris-
[m.1.0]alkane frameworks.
Initially, we probed reactions of cyclopropyl silyl ethers
with tris-p-bromophenylaminium hexachloroantimonate
TBPA), a well-known hole catalyst,10 to determine if and
1
(
how these compounds react with a nonmetal-based oxidizing
agent. Treatment of 1a with TBPA (2 equiv) in MeCN at
room temperature for 2 h resulted in the generation of ring-
expanded product 3a5g (Scheme 2). Subjecting the crude
reaction mixture to refluxing methanolic NaOAc (5 equiv)
for 2 h produced enone 2a (60%). In a similar manner,
enones 2b and 2c were obtained in 76% and 52% yields,
starting with 1b and 1c, respectively. The results clearly show
Scheme 3
(
6) (a) Sheller, M. E.; Mathies, P.; Petter, B.; Frei, B. HelV. Chim. Acta
1
5
8
1
6
984, 67, 1748-1754. (b) Gassman, P. G.; Burns, S. J. J. Org. Chem. 1988,
3, 5576-5578. (c) Rinderhagen, H.; Mattay, J. Chem. Eur. J. 2004, 10,
51-874. (d) Waske, P. A.; Mattay, J. Tetrahedron, 2005, 61, 10321-
0330. (e) Rinderhagen, H.; Waske, P. A.; Mattay, J. Tetrahedron 2006,
2, 6589-6593.
(7) Representative reviews for PET reaction of cyclopropanes. (a)
Miyashi, T.; Ikeda, H.; Takahashi, Y.; Akiyama, K. In AdVances in Electron
Transfer Chemistry; Mariano, P. S., Ed.; JAI Press: Greenwich, CT, 1999;
Vol. 6, pp 1-39. (b) Mizuno, K.; Ichinose, N.; Yoshimi, Y. J. Photochem.
Photobiol. C 2000, 1, 167-193.
(8) On the contrary, PET reactions of cyclopropanone silyl acetals have
been well investigated. (a) Abe, M.; Oku, A. J. Chem. Soc., Chem. Commun.
1
994, 1673-1674. (b) Oku, A.; Abe, M.; Iwamoto, M. J. Org. Chem. 1994,
5
9, 7445-7452. (c) Mizuno, K.; Konishi, G.; Nishiyama, T.; Inoue, H.
Chem. Lett. 1995, 1077-1078. (d) Abe, M.; Oku, A. J. Org. Chem. 1995,
6
0, 3065-3073. (e) Mizuno, K.; Nishiyama, T.; Takahashi, N.; Inoue, H.
Tetrahedron Lett. 1996, 37, 2975-2978. (f) Abe, M.; Nojima, M.; Oku,
A. Tetrahedron Lett. 1996, 37, 1833-1836. (g) Oku, A.; Miki, T.; Abe,
M.; Ohira, M.; Kamada, T. Bull. Chem. Soc. Jpn. 1999, 72, 511-517. (h)
Oku, A.; Takahashi, H.; Asmus, S. J. Am. Chem. Soc. 2000, 122, 7388-
7
389.
9) Lewis acids are known to prefer regioselective external bond cleavage
ingly, PET reaction of 1c again generated the spirocyclic
ketone 5 (59% based on 83% conversion), a product that is
different from that formed by using TBPA as the oxidant.
In the cases of 1b and 1c, no reaction took place in the
(
of cyclopropanols incorporated into bicyclic systems. (a) Murai, S.; Aya,
T.; Renge, T.; Ryu, I.; Sonoda, N. J. Org. Chem. 1974, 39, 858-859. (b)
Ryu, I.; Ando, M.; Ogawa, A.; Murai, S.; Sonoda, N. J. Am. Chem. Soc.
1
1
983, 105, 7192-7194. (c) Ryu, I.; Murai, S.; Sonoda, N. J. Org. Chem.
986, 51, 2389-2361. (d) Nakahira, H.; Ryu, I.; Han, L.; Kambe, N.;
Sonoda, N. Tetrahedron Lett. 1991, 32, 229-232. (e) Nakahira, H.; Ryu,
I.; Ikebe, M.; Oku, Y.; Ogawa, A.; Kambe, N.; Sonoda, N.; Murai, S. J.
Org. Chem. 1992, 57, 17-28.
(11) (a) Schaap, A. P.; Lopez, L.; Gagnon, S. D. J. Am. Chem. Soc.
1983, 105, 663-664. (b) Schaap, A. P.; Siddiqui, S.; Gagnon, S. D.; Lopez,
L. J. Am. Chem. Soc. 1983, 105, 5149-5150.
(10) (a) Bellville, D. J.; Wirth, D. D.; Bauld, N. L. J. Am. Chem. Soc.
(12) On the basis of the redox potentials of the compounds, both the
1
•+
1
981, 103, 718-720. (b) Bauld, N. L.; Bellville, D. J.; Harirchian, B.;
singlet excited state of DCA ( DCA*) and the radical cation of BP (BP )
Lorentz, K. T.; Pabon, R. A.; Reynolds, D. W.; Wirth, D. D.; Chiou, H. S.;
Marsh, B. K. Acc. Chem. Res. 1987, 20, 371-378. (c) Bauld, N. L. In
AdVances in Electron Transfer Chemistry; Mariano, P. S., Ed.; JAI Press:
Greenwich, CT, 1992; Vol. 2, pp 1-66.
could accept a single electron from 1. However, the former electron transfer
generates a radical ion pair that often undergoes energy wasting back
6
electron transfer. Detailed redox data and discussion are described in the
Supporting Information.
2812
Org. Lett., Vol. 9, No. 15, 2007