Please do not adjust margins
Journal of Materials Chemistry A
DOI: 10.1039/C6TA01776B
COMMUNICATION
Journal Name
extraction ability were investigated using steady-state and time- means S101 has potential to replace the more expensive spiro-
resolved photoluminescence (PL) measurements, in which the OMeTAD. This work also lays out a strategy for the design and
efficient quenching of the steady-state PL and the reduction of the development of new cost effective and efficient HTMs for
PL lifetime are indicators of efficient charge extraction at the PSCs.
perovskite/HTM interface. From the PL spectra (Fig. 4a), it is
evident that both HTMs significantly quench perovskite emission Acknowledgments
signal, with HTM spiro-OMeTAD having a slightly better PL
quenching efficiency (ca. 93%) relative to S101 (ca. 89%). Time- This work was funded by National Research Foundation (NRF)
Singapore (CRP Award no.: NRF-CRP4-2008-03 and NRF–CRP14–
014–03 , Singapore Ministry of Education (MOE2013-T2-044) and
the Singapore-Berkeley Research Initiative for Sustainable Energy
SinBeRISE) CREATE Programme. Authors would like to thank Dr.
resolved PL measurements were carried out with excitation at 404
2
nm and monitoring the entire emission spectral range (Fig. 4b). The
pristine perovskite (CH
about 2.7 ns, whereas this was shorter in CH
samples. CH NH PbI /spiro-OMeTAD samples showed a decay time
3
NH
3
PbI
3
) exhibited a radiative life time of
(
3
NH PbI /HTM
3
3
Francesco Maddalena for the helping in fabricating FETs.
3
3
3
of 0.8 ns whereas CH NH PbI /S101 samples showed a longer decay
3
3
3
References
life time of 1.1 ns. This indicates that spiro-OMeTAD has slightly
better hole extraction ability as compared to S101. As a result it is
unlikely that further device optimization will enable the device
performance of S101 to exceed that from spiro-OMeTAD-based
devices. The values of 11% and 12.3% obtained from our devices
are below the current state-of-the-art values of over 20% but those
result from extensive optimization of the perovskite preparation
and device fabrication. We believe that with similar optimization
efficiency values close to 20% might be attainable using S101. In
that case, the much lower cost of S101, due to its its simpler
synthesis and comparable device performance might offer a
potentially lower cost/power ratio which is the ultimate economic
criterion for photovoltaic systems.
1
2
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H.
J. Snaith, Science, 2012, 338, 643-647.
H. S. Kim, C.-R. Lee, J. H. Im, K.-B. Lee, T. Moehl, A.
Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E.
Moser, M. Grätzel and N.-G. Park, Sci. Rep., 2012, 2, 591.
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao,
M. K. Nazeeruddin and M. Gratzel, Nature, 2013, 499, 316-
319.
T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale and Y. M.
Lam, J. Mater. Chem. A, 2015, 3, 8943-8969.
A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am.
Chem. Soc., 2009, 131, 6050-6051.
S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J.
P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J.
Snaith, Science, 2013, 342, 341-344.
3
4
5
6
7
8
G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel,
S. Mhaisalkar and T. C. Sum, Science, 2013, 342, 344-347.
H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z.
Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-
5
46.
9
1
N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and
S. I. Seok, Nature, 2015, 517, 476-480.
0 W. S. Yang , J. H. Noh , N. J. Jeon , Y. C. Kim , S. Ryu , J. Seo ,
S. I. Seok , Science, 2015 , 348 , 1234.
1
1
1 Z. Yu and L. Sun, Adv. Energy Mater., 2015, 5 (12), 1500213.
2 J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A.
Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M.
Gratzel and S. I. Seok, Nat. Photonics, 2013, 7, 486-491.
3 H. Li, K. Fu, A. Hagfeldt, M. Grätzel, S. G. Mhaisalkar and A.
C. Grimsdale, Angew. Chem. Int. Ed., 2014, 53, 4085-4088.
1
Fig. 4(a) The steady-state photoluminescence (PL) spectra and (b) time-
resolved PL spectra of CH NH PbI , CH NH PbI /S101 and CH NH PbI /spiro-
3 3 3 3 3 3 3 3 3
OMeTAD.
14 T. Krishnamoorthy, F. Kunwu, P. P. Boix, H. Li, T. M. Koh, W.
L. Leong, S. Powar, A. Grimsdale, M. Gratzel, N. Mathews
and S. G. Mhaisalkar, J. Mater. Chem. A, 2014, 2, 6305-6309.
1
1
5 N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel
and S. I. Seok, J. Am. Chem. Soc., 2013, 135, 19087-19090.
6 A. Krishna, D. Sabba, H. Li, J. Yin, P. P. Boix, C. Soci, S. G.
Mhaisalkar and A. C. Grimsdale, Chem. Sci., 2014,
709.
17 K. Do, H. Choi, K. Lim, H. Jo, J. W. Cho, M. K. Nazeeruddin
5, 2702-
Conclusions
2
A
novel HTM S101 based Silafluorene core has been
and J. Ko, Chem. Commun., 2014, 50, 10971-10974.
synthesized via a short, low cost route and employed in
perovskite as hole transporting layer. The devices fabricated
with HTM S101 shows a PCE of ~ 11% which is comparable to
that (η = 12.3%) obtained with the state of the HTM spiro-
OMeTAD. We firmly believe that with further optimization and
fine tuning of various device parameters and by developing
more understanding of interfacial characteristics, there can be
further significant enhancement in the device performance.
The short, efficient synthesis and good device performance
1
1
8 P. Qin, S. Paek, M. I. Dar, N. Pellet, J. Ko, M. Grätzel and M.
K. Nazeeruddin, J. Am. Chem. Soc., 2014, 136, 8516-8519.
9 B. Xu, E. Sheibani, P. Liu, J. Zhang, H. Tian, N. Vlachopoulos,
G. Boschloo, L. Kloo, A. Hagfeldt and L. Sun, Adv. Mater.,
2014, 26, 6629-6634.
0 H. Choi, S. Paek, N. Lim, Y. H. Lee, M. K. Nazeeruddin and J.
Ko, Chem. Eur. J., 2014, 20, 10894-10899.
1 A. Krishna, D. Sabba, J. Yin, A. Bruno, P. P. Boix, Y. Gao, H. A.
Dewi, G. G. Gurzadyan, C. Soci, S. G. Mhaisalkar and A. C.
Grimsdale, Chem. Eur. J, 2015, 21, 15113-15117.
2
2
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins