Synthesis and Water Solubility of Adamantyl-OEG-fullerene Hybrids
16
Further development of this concept led to the construc-
tion of hybrid systems in which a variety of functional
moieties such as peptides,12 oligonucleotides, porphy-
rins,14 flavonoids,15 steroids, and DNA-binding and
17
protein-binding fragments were attached to a fullerene
core. Such dyad systems could amplify or alter biochemi-
cal characteristics of their components or even produce
compounds with new biological properties.
Recently, preparation of novel fullerene hybrids bear-
ing 1,4-dihydropyridin18 and arylpiperazine functional
groups was described by Martin and co-workers. Al-
though these materials combine components with very
promising biological activity, their best solubility in a 10%
DMSO aqueous solution was reported to be in the range
13
(5) (a) Bosi, S.; Da Ros, T.; Castellano, S.; Banfi, E.; Prato, M. Bioorg.
Med. Chem. Lett. 2000, 10 (10), 1043-1045. (b) Tsao, N.; Luh, T.-Y.;
Chou, C.-K.; Wu, J.-J.; Lin, Y.-S.; Lei, H.-Y. Antimicrob. Agents
Chemotherapy 2001, 45 (6), 1788-1793. (c) Kai, Y.; Komazawa, Y.;
Miyajima, A.; Miyata, N.; Yamakoshi, Y. Fulleren. Nanotubes Carbon
Nanostruct. 2003, 11 (1), 79-87. (d) Mashino, T.; Nishikawa, D.;
Takahashi, K.; Usui, N.; Yamori, T.; Seki, M.; Endo, T.; Mochizuki,
M. Bioorg. Med. Chem. Lett. 2003, 13 (24), 4395-4397. (e) Rajagopalan,
P.; Wudl, F.; Schinazi R. F.; Boudinot, F. D. Antimicrob. Agents
Chemother. 1996, 40 (10), 2262.
19
-
5
of ∼10 M and could present a challenge in further
(6) (a) Li, L.-S.; Hu, Y.-J.; Wu, Y.; Wu, Y.-L.; Yue, J.; Yang, F. J.
Chem. Soc., Perkin Trans. 1 2001, 6, 617-621. (b) Irie, K.; Nakamura,
Y.; Ohigashi, H.; Tokuyama, H.; Yamago, S.; Nakamura, E. Biosci.
Biotechnol. Biochem. 1996, 60 (8), 1359-1361. (c) Tabata, Y.; Ikada,
Y. Pure Appl. Chem. 1999, 71 (11), 2047-2053. (d) Sayes, C. M.;
Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.; Tao, Y.
J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V.
L. Nano Lett. 2004, 4 (10), 1881-1887. (e) Simic-Krstic, J. Arch. Oncol.,
preclinical development of these compounds.
Other promising candidates for the creation of new
fullerene hybrids with improved therapeutic properties
are adamantyl derivatives. Adamantyl-containing drugs
21
have shown excellent efficacy as antiviral, antiglyce-
23
24
1
997, 5 (1), 143. (f) Nakajima, N.; Nishi, C. et al., Fullerene Sci.
mic,22 antiarrythmic, antidepressant, and antitumor
Technol. 1996, 4 (1), 1. (g) Tabata, Y. et al. Jpn. Cancer Res., 1997,
25
agents. Among a broad spectrum of adamantyl-contain-
8
8, 1108.
ing therapeutic agents aminoadamantyl derivatives are
particularly interesting since they are well-studied com-
pounds that have an extensive array of clinical applica-
tions. These applications range from healing of viral
infections26 to treatment of neuroleptic extrapyramidal
(7) (a) Thrash, T. P.; Cagle D. W. et al. Proc. Electrochem. Soc. 1997,
9
7, 14349. (b) Wilson, L. J.; Cagle, D. W. Coord. Chem. Rev. 1999, 192,
1
99. (c) Cagle, D. W.; Kennel, S. J.; Mirzadeh, S.; Alford, J. M.; Wilson,
L. J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96 (9), 5182. (d) Kato, H.;
Kanazawa, Y.; Okumura, M.; Taninaka, A.; Yokawa, T.; Shinohara,
H. J. Am. Chem. Soc. 2003, 125 (14), 4391-4397. (e) Bolskar, R. D.;
Benedetto, A. F.; Husebo, Lars O.; Price, R. E.; Jackson, E. F.; Wallace,
S.; Wilson, L. J.; Alford, J. M. J. Am. Chem. Soc. 2003, 125 (18), 5471-
5
478.
8) (a) Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.;
(14) (a) Imahori, H.; Fukuzumi, S. Adv. Funct. Mater. 2004, 14(6),
525-536. (b) Guldi, D. M. Pure Appl. Chem. 2003, 75 (8), 1069-1075.
(c) Diederich, F. Chimia 2001, 55 (10), 821-827. (d) Schuster, D. I.
Carbon 2000, 38 (11-12), 1607-1614.
(15) (a) de la Torre, M. D. L.; Rodrigues, A. G. P.; Tome, A. C.; Silva,
A. M. S.; Cavaleiro, J. A. S. Tetrahedron 2004, 60 (16), 3581-3592.
(b) de la Torre, M. D. L.; Marcorin, G. L.; Pirri, G.; Tome, A. C.; Silva,
A. M. S.; Cavaleiro, J. A. S. Tetrahed. Lett. 2002, 43 (9), 1689-1691.
(c) de la Torre, M. D. L.; Tome, A. C.; Silva, A. M. S.; Cavaleiro, J. A.
S. Tetrahedron Lett. 2002, 43 (26), 4617-4620.
(16) (a) Mehta, G.; Singh, V. Chem. Soc. Rev. 2002, 31 (6), 324-
334. (b) MacMahon, S.; Fong, R.; Baran, P. S.; Safonov, I.; Wilson, S.
R.; Schuster, D. I. J. Org. Chem. 2001, 66 (16), 5449-5455. (c) Schuster,
D. I. Carbon 2000, 38 (11-12), 1607-1614. (d) Ishi-I, T.; Shinkai, S.
Tetrahedron 1999, 55 (43), 12515-12530. (e) Fong, R.; Schuster, D. I.;
Wilson, S. R. Org. Lett. 1999, 1 (5), 729-732.
(17) (a) Samal, S.; Murthy, C. N.; Geckeler, K. E. Adv. Macromol.
Supramol. Mater. Proc. 2003, 291-307. (b) Bergamin, M.; Da Ros, T.;
Spalluto, G.; Prato, M.; Boutorine, A. Chem. Commun. 2001, 1, 17-
18. (c) Isobe, H.; Tomita, N.; Jinno, S.; Okayama, H.; Nakamura, E.
Chem. Lett. 2001, 12, 1214-1215. (d) Prabha, C. R.; Patel, R.; Murthy,
C. N. Fuller. Nanotubes Carbon Nanostruct. 2004, 12 (1, 2), 405-412.
(18) (a) Suarez, M.; Verdecia, Y.; Illescas, B.; Martinez-Alvarez, R.;
Alvarez, A.; Ochoa, E.; Seoane, C.; Kayali, N.; Martin, N. Tetrahedron
2003, 59 (46), 9179-9186. (b) Illescas, B.; Martinez-Grau, M. A.; Torres,
M. L.; Fernandez-Gadea, J.; Martin, N. Tetrahed. Lett. 2002, 43 (23),
4133-4136.
(
Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J.
B.; West, J. L.; Colvin, V. L. Nano Lett. 2004, 4 (10), 1881-1887. (b)
Chiang, L. Y.; Bhonsle, J. B.; Wang, L.; Shu, S. F.; Chang, T. M.; Hwu,
J. R. Tetrahedron 1996, 52, 4963. (c) Chiang, L. Y.; Lu, F.-J.; Lin, J.-
T., J. Chem. Soc., Chem. Commun. 1995, 12, 1283. (d) Mirkov, S. M.;
Djordjevic, A. N.; Andric, N. L.; Andric, S. A.; Kostic, T. S.; Bogdanovic,
G. M.; Vojinovic-Miloradov, M. B.; Kovacevic, Radmila Z. Nitric Oxide
2
004, 11 (2), 201. (e) Dugan, L. L.; Gabrielsen, J. K.; Yu S. P. et al.
Neurobiol. Dis. 1996, 3, 129.
(9) (a) Lin, A. M.; Luh, T. Y.; Chou, C. K.; Ho, L. T. Ann. New York
Acad. Sci. 1999, 890, 340-51. (b) Dickey, C.; Hodgson, J.; Mcgowan,
K.; Marshall, A.; Castellino, A. Nature Biotechnol. 1997, 15 (10), 932.
(
c) Sitharaman, B.; Asokan, S.; Rusakova, I.; Wong, M. S.; Wilson, L.
J. Nano Lett. 2004, 4 (9), 1759-1762. (d) Dugan, L. L.; Lovett, E.;
Cuddihy, S.; Ma, B.-W.; Lin, T.-S.; Choi, D. W. Fullerene Chem. Phys.
Technol. 2000, 467-479.
(
10) (a) Li, Z.; Shao, P.; Qin, J. J. Appl. Polymer Sci. 2004, 92 (2),
8
67-870. (b) Manolova, N.; Rashkov, I.; Beguin, F.; Damme, H. V.
Chem. Commun. 1993, 1725. (c) Huang, X. D.; Goh, S. H.; Lee, S. Y.
Macromol. Chem. Phys. 2000, 201, 2660. (d) Ederle, Y.; Mathis, C.;
Nuffer, R. Synth. Met. 1997, 86, 2287. (e) Song, Tao; Goh, S. H.; Lee,
S. Y. Macromolecules 2002, 35 (10), 4133-4137.
(11) (a) Gutierrez-Nava, M.; Accorsi, G.; Masson, P.; Armaroli, N.;
Nierengarten, J.-F. Chem. Eur. J. 2004, 10 (20), 5076-5086. (b)
Hasobe, T.; Kamat, P. V.; Absalom, M. A.; Kashiwagi, Y.; Sly, J.;
Crossley, M. J.; Hosomizu, K.; Imahori, H.; Fukuzumi, S. J. Phys.
(19) Illescas, B. M.; Martinez-Alvarez, R.; Fernandez-Gadea, J.;
Martin, N. Tetrahedron 2003, 59 (34), 6569-6577.
(20) Nakazano, M.; Hasegawa, S.; Yamamoto, T.; Zaitsu, K. Bioorg.
Med. Chem. Lett. 2004, 14, 5619-5621.
Chem.
B 2004, 108 (34), 12865-12872. (c) Nierengarten, J.-F.;
Guttierez-Nava, M.; Zhang, S.; Masson, P.; Oswald, L.; Bourgogne, C.;
Rio, Y.; Accorsi, G.; Armaroli, N.; Setayesh, S. Carbon 2004, 42 (5-6),
1
077-1083. (d) Braun, M.; Atalick, S.; Guldi, D. M.; Lanig, H.;
(21) (a) Makarova, N. V.; Boreko, E. I.; Moiseev, I. K.; Pavlova, N.
I.; Nikolaeva, S. N.; Zemtsova, M. N.; Savinova, O. V. Pharm. Chem.
J. 2003, 37 (8), 402-406. (b) Makarova, N. V.; Boreko, E. I.; Moiseev,
I. K.; Pavlova, N. I.; Nikolaeva, S. N.; Zemtsova, M. N.; Vladyko, G. V.
Pharm. Chem. J. 2002, 36 (1), 3-6. (c) Kolocouris, N.; Kolocouris, A.;
Foscolos, G. B.; Fytas, G.; Neyts, J.; Padalko, E.; Balzarini, J.; Snoeck,
R.; Andrei, G.; De Clercq, E. J. Med. Chem. 1996, 39 (17), 3307-3318.
(22) (a) Villhauer, E. B.; Brinkman, J. A.; Naderi, G. B.; Burkey, B.
F.; Dunning, B. E.; Prasad, K.; Mangold, B. L.; Russell, M. E.; Hughes,
T. E. J. Med. Chem. 2003, 46 (13), 2774-2789. (b) Spasov, A. A.;
Khamidova, T. V.; Bugaeva, L. I.; Morozov, I. S., Pharm. Chem. J. 2000,
34 (1), 1-7.
Brettreich, M.; Burghardt, S.; Hatzimarinaki, M.; Ravenelli, E.; Prato,
M.; van Eldik, R.; Hirsch, A. Chem. Eur. J. 2003, 9 (21), 5176. (e)
Takaguchi, Y.; Sako, Y.; Yanagimoto, Y.; Tsuboi, S.; Motoyoshiya, J.;
Aoyama, H.; Wakahara, T.; Akasaka, T. Tetrahed. Lett. 2003, 44 (31),
5
777-5780.
12) (a) Pantarotto, D.; T., N.; Bianco, A.; Prato, M. Mini-Rev. Med.
(
Chem. 2004, 4 (7), 805-814. (b) Sofou, P.; Elemes, Y.; Panou-Pomonis,
E.; Stavrakoudis, A.; Tsikaris, V.; Sakarellos, C.; Sakarellos-Daitsiotis,
M.; Maggini, M.; Formaggio, F.; Toniolo, C. Tetrahedron 2004, 60 (12),
2
823-2828. (c) Bianco, A.; Pantarotto, D.; Hoebeke, J.; Briand, J.-P.;
Prato, M. Org. Biomolec. Chem. 2003, 1 (23), 4141-4143. (d) Bianco,
A.; Da Ros, T.; Prato, M.; Toniolo, C. J. Pept. Sci. 2001, 7 (4), 208-
(23) Narayanan, V. L.; Sweeney, F. J. J. Med. Chem. 1972, 15 (4),
443-5.
2
19. (e) Burley, G. A.; Keller, P. A.; Pyne, S. G. Fuller. Sci. Technol.
999, 7 (6), 973-1001.
1
(24) (a) Abou-Gharbia, M. A.; Childers, W. E., Jr.; Fletcher, H.;
McGaughey, G.; Patel, U.; Webb, M. B.; Yardley, J.; Andree, T.; Boast,
C.; Kucharik, R. J., Jr.; Marquis, K.; Morris, H.; Scerni, R.; Moyer, J.
A. J. Med. Chem. 1999, 42 (25), 5077-5094. (b) Huber, T. J.; Dietrich,
D. E.; Emrich, H. M. Pharmacopsychiatry 1999, 32 (2), 47-55.
(25) (a) El-Sherbeny, M. A. Med. Chem. Res. 2002, 11 (2), 74-86.
(b) Fontana, J. A.; Rishi, A. K. Leukemia 2002, 16 (4), 463-472.
(13) (a) Da Ros, T.; Bergamin, M.; Vazquez, E.; Spalluto, G.; Baiti,
B.; Moro, S.; Boutorine, A.; Prato, M. Eur. J. Org. Chem. 2002, 3, 405-
13. (b) Boutorine, A. S.; Balland, O.; Tokuyama, H.; Takasugi, M.;
Isobe, H.; Nakamura, E.; Helene, C. Proc. Electrochem. Soc. 1997, 97-
2 (5), 186-196. (c) An, Y.-Z.; Chen, C.-H. B.; Anderson, J. L.; Sigman,
D. S.; Foote, C. S.; Rubin, Y. Tetrahedron 1996, 52 (14), 5179-89.
4
4
J. Org. Chem, Vol. 70, No. 7, 2005 2661