1694
P. Y. S. Lam et al. / Tetrahedron Letters 44 (2003) 1691–1694
8. Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am.
Chem. Soc. 1998, 120, 12459–12467.
9. Clement, J. B.; Hayes, J. F.; Sheldrake, H. M.; Sheldrake,
O-arylation, see: Evans, D. A.; Katz, J. L.; West, T. R.
Tetrahedron Lett. 1998, 39, 2937–2940; (d) Chan, D. M.
T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetra-
hedron Lett. 1998, 39, 2933–2936.
P. W.; Wells, A. S. Synlett 2001, 1423–1427.
10. Barton, D. H. R.; Finet, J. P.; Khamsi, J. Tetrahedron
Lett. 1989, 30, 937–940.
11. Crystal structure of a related Cu(III) has recently been
determined: Hayashi, H.; Pujinami, S.; Nagatomo, S.;
Ogo, S.; Suzuki, Y.; Kitagawa, T. J. Am. Chem. Soc.
2000, 122, 2124–2125.
12. Representative experimental: N-p-tolylphenylalanine
methyl ester. To a 20 mL vial equipped with a CaSO4
drying tube was added in sequence p-tolylboronic acid
2. (a) Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G.
Tetrahedron Lett. 2002, 43, 3091–3094; (b) Lam, P. Y. S.;
Deudon, S.; Hauptman, E.; Clark, C. G. Tetrahedron
Lett. 2001, 42, 2427–2429; (c) Lam, P. Y. S.; Deudon, S.;
Kristin, M. A.; Li, R.; He, M.; DeShong, P.; Clark, C. G.
J. Am. Chem. Soc. 2000, 22, 7600–7601.
3. For catalytic copper, see: (a) Lam, P. Y. S.; Vincent, G.;
Clark, C. G.; Deudon, S.; Jadhav, J. K. Tetrahedron Lett.
2001, 42, 3415–3418; (b) Kwong, F. Y.; Klapars, A.;
Buchwald, S. L. Org. Lett. 2002, 4, 581–584; (c) Collman,
J. P.; Zhong, M.; Zhang, C.; Costanzo, S. Org. Lett.
2001, 66, 7892–7897 and references cited therein.
4. For solid-phase N-arylation, see: (a) Combs, A. P.;
Tadesse, S.; Rafalski, M.; Haque, T. S.; Lam, P. Y. S. J.
Comb. Chem. 2002, 4, 179–182; (b) Combs, A. P.; Rafal-
ski, M. J. Comb. Chem. 2000, 2, 29–32; (c) Combs, A. P.;
Saubern, S.; Rafalski, M.; Lam, P. Y. S. Tetrahedron
Lett. 1999, 40, 1623–1626.
5. For S-arylation, see: (a) Savarin, C.; Srogl, J.; Liebe-
skind, L. S. Org. Lett. 2002, 4, 4309–4312; (b) Herradura,
P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2,
2019–2022. For O-arylation, see: (c) Evans, D. A.; Katz,
J. L.; Peterson, G. S.; Hinterman, T. J. Am. Chem. Soc.
2001, 123, 12411–12413; (d) Simon, J.; Salzbrunn, S.;
Surya Prakash, G. K.; Petasis, N. A.; Olah, G. A. J. Org.
Chem. 2001, 66, 633–634; (e) Decicco, C. P.; Song, Y.;
Evans, D. A. Org. Lett. 2001, 3, 1029–1032; (f) Petrassi,
H. M.; Sharpless, K. B.; Kelly, J. W. Org. Lett. 2001, 3,
139–142; (g) Jung, M. E.; Lazarova, T. I. J. Org. Chem.
1999, 64, 2976–2977. For N-arylation, see: (h) Collot, V.;
Bovy, P. R.; Rault, S. Tetrahedron Lett. 2000, 41, 9053–
9057; (i) Mederski, W. W. K. R.; Lefort, M.; Germann,
M.; Kux, D. Tetrahedron 1999, 55, 12757–12770; (j)
Cundy, D. J.; Forsyth, S. A. Tetrahedron Lett. 1998, 39,
7979–7982.
,
(90.5 mg, 0.667 mmol, 2.0 equiv.), 4 A molecular sieves
(250 mg), 3 mL of dry dichloromethane, triethylamine (93
mL, 0667 mmol, 2.0 equiv.), L-phenylalanine methyl ester
hydrochloride (71.5 mg, 0.333 mmol, 1.0 equiv.) and
cupric acetate (66.7 mg, 0.367 mmol, 1.1 equiv.). The
progress of the reaction was monitored by TLC (eluent:
15% ethyl acetate/hexane). After 15 min, 80% of the
starting material was consumed. The reaction was
allowed to stir under air at room temperature for 24 h.
The reaction was quenched by a solution of 3 mL of 2 M
NH3 in methanol. The solvent was evaporated under
reduced pressure and the residue dissolved in 3 mL of
dichloromethane and purified by silica gel chromatogra-
phy (eluent: 15% ethyl acetate/hexane) to give 57.8 mg of
N-p-tolylphenylalanine methyl ester (75% yield) as a
1
colorless solid. H NMR (300 MHz, CDCl3): l 7.32–7.21
(m, 5H), 6.98 (d, J=8.2 Hz, 2H), 6.52 (d, J=8.2 Hz, 2H),
4.36 (t, J=6.1 Hz, 1H), 3.68 (s, 3H), 3.12 (t, J=5.9 Hz,
2H), 2.22 (s, 3H); MS AP+: 270.5 [M+H]+ (70%), 539.3
[2M+H]+; HRMS calculated for C17H20NO2 [M+H]+ m/
z=270.1494, found m/z 270.1484. Anal. calcd for
C17H19NO2, 0.17H2O, C, 74.96; H, 7.16; N, 5.14; found:
C, 74.96; H, 7.03; N, 5.14%.
13. Chiral reverse-phase HPLC provided baseline resolution
of the enantiomers from which any racemization could be
determined.
14. The lack of racemization is in agreement with the findings
of Combs and Rafalski (Ref. 4b) for arylation of sulfon-
amides.
15. Cupric acetate is insoluble in CH2Cl2 (colorless solution),
the preferred solvent. When the amine substrate is added
an instantaneous deep blue color results, suggesting the
coordination and dissolution of Cu(OAc)2 as the first step
of the reaction.
6. (a) Kang, S.-K.; Lee, S.-H.; Lee, D. Synlett 2000, 1022–
1024; (b) Fedorov, A. Y.; Finet, J.-P. Tetrahedron Lett.
1998, 39, 7979–7982; (c) Arnauld, T.; Barton, D. H. R.;
Doris, E. Tetrahedron 1997, 53, 4137–4144; (d) Lopez-
Alvarado, P.; Avendano, C.; Menendez, J. C. J. Org.
Chem. 1995, 60, 5678 and references cited therein.