ChemComm
Communication
of M4 and intramolecular annulation of 4 provide 3a.8e This
tentative pathway also explains the necessity of excess Cu(OAc)2
and Na2CO3 to realize a good conversion.
Table 3 Copper-mediated reaction of N-(quinolin-8-yl)benzamide with
cyano-substratesa
In conclusion, we have developed copper-mediated C–H/C–H
coupling of benzoic acid derivatives and ethyl cyanoacetate, along
with simultaneous C–N bond formation, with the aid of the
8-aminoquinoline-based double N,N0-coordination strategy. The trans-
formation exhibits wide generality, functional tolerance and high
steric selectivity. It also provides a straightforward approach for the
construction of an isoquinolinone scaffold, which is a privileged
moiety and ubiquitous in natural products and pharmaceuticals.
Further elucidation of the detailed mechanism and application of
this transformation are under investigation in our laboratory.
We gratefully acknowledge financial support from the National
Natural Science Foundation of China (Grants 21021063, 91229204,
and 81025017), and National S&T Major Projects (2012ZX09103101-
072, 2013ZX09507-001, and 2014ZX0950 7002-001), Sponsored by the
Program of Shanghai Subject Chief Scientist (Grant 12XD1407100).
a
Reaction conditions: 1 (0.4 mmol), cyano-substrates (1.2 mmol),
copper salts (1.2 mmol), 90 1C, 4–6 h, Ar.
Notes and references
1 (a) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007, 107, 174;
(b) C. J. Li, Acc. Chem. Res., 2009, 42, 335; (c) I. V. Seregin and
V. Gevorgyan, Chem. Soc. Rev., 2007, 36, 1173; (d) S. H. Cho, J. Y. Kim,
J. Kwak and S. Chang, Chem. Soc. Rev., 2011, 40, 5068; (e) G. Y. Song,
F. Wang and X. W. Li, Chem. Soc. Rev., 2012, 41, 3651; ( f ) J. F. Hartwig,
Acc. Chem. Res., 2012, 45, 864; (g) N. Kuhl, M. N. Hopkinson, J. Wencel-
Delord and F. Glorius, Angew. Chem., Int. Ed., 2012, 51, 10236;
(h) W. R. Gutekunst and P. S. Baran, Chem. Soc. Rev., 2011, 40, 1976.
2 (a) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew. Chem., Int.
Ed., 2009, 48, 5094; (b) T. W. Lyons and M. S. Sanford, Chem. Rev.,
2010, 110, 1147.
3 T. C. Boorman and I. Larrosa, Chem. Soc. Rev., 2011, 40, 1910.
4 (a) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010,
110, 624; (b) J. C. Lewis, R. G. Bergman and J. A. Ellman, Acc. Chem.
Res., 2008, 41, 1013.
5 (a) P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012,
112, 5879; (b) L. Ackermann and R. Vicente, Top. Curr. Chem., 2010, 292, 211.
6 (a) C. Zhang, C. H. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3464;
(b) A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem., Int.
Ed., 2011, 50, 11062.
7 (a) G. Rouquet and N. Chatani, Angew. Chem., Int. Ed., 2013, 52, 11726;
(b) M. Corbet and F. De Campo, Angew. Chem., Int. Ed., 2013, 52, 9896.
8 (a) J. Roane and O. Daugulis, Org. Lett., 2013, 15, 5842; (b) T. Truong,
K. Klimovica and O. Daugulis, J. Am. Chem. Soc., 2013, 135, 9342;
(c) L. D. Tran, J. Roane and O. Daugulis, Angew. Chem., Int. Ed., 2013,
52, 6043; (d) L. D. Tran, I. Popov and O. Daugulis, J. Am. Chem. Soc.,
2012, 134, 18237; (e) A. M. Suess, M. Z. Ertem, C. J. Cramer and
S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 9797.
effect on this transformation, indicating that a free-radical path-
way might be excluded (Table 1, entry 16). 2-(Cyanomethyl)-
benzamide 4 could be smoothly transformed to the target
molecule 3a with high yield, while ortho-blocked benzamide
1m generated neither the imino product 6 nor the enamine 7
under standard conditions with 96% recovery of 1m, which
demonstrated that this tandem reaction firstly underwent the
direct oxidative C(sp2)–H/C(sp3)–H cross-coupling followed by
the intramolecular annulation to form the isoquinolinone scaf-
fold (Scheme S1 in the ESI†).
Based on the above observations and considerations, a
plausible reaction mechanism is proposed in Scheme 2. Firstly,
cupration of the active menthene of ethyl cyanoacetate under
base conditions provided intermediate M1, which undergoes ligand
exchange with 1a to afford N,N-chelated copper(II) complex M2,
followed by the Cu(OAc)2-promoted oxidation of M2 to form
copper(III) complex M3.9 Intramolecular C–H cupration of the phenyl
ring generates the key intermediate M4,15 which is speculated to be
the rate-determining step with a kinetic isotope effect (KIE) value of
3.65 (Scheme S2 in the ESI†). The subsequent reductive elimination
9 M. Nishino, K. Hirano, T. Satoh and M. Miura, Angew. Chem., Int.
Ed., 2013, 52, 4457.
10 (a) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009,
48, 6954; (b) D. Ma and Q. Cai, Acc. Chem. Res., 2008, 41, 1450.
11 (a) X. A. Xie, G. R. Cai and D. W. Ma, Org. Lett., 2005, 7, 4693;
(b) S. F. Yip, H. Y. Cheung, Z. Y. Zhou and F. Y. Kwong, Org. Lett.,
2007, 9, 3469.
12 X. A. Xie, Y. Chen and D. W. Ma, J. Am. Chem. Soc., 2006, 128, 16050.
13 (a) J. Y. Lu, X. Y. Gong, H. J. Yang and H. Fu, Chem. Commun., 2010,
46, 4172; (b) T. Liu, C. Y. Zhu, H. J. Yang and H. Fu, Adv. Synth.
Catal., 2012, 354, 1579.
14 (a) B. D. Krane and M. Shamma, J. Nat. Prod., 1982, 45, 377;
(b) D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev.,
2003, 103, 893; (c) W. Zhang, J. P. Mayer, S. E. Hall and
J. A. Weigel, J. Comb. Chem., 2001, 3, 255; (d) S. B. Mhaske and
N. P. Argade, Tetrahedron, 2006, 62, 9787.
15 X. Ribas, D. A. Jackson, B. Donnadieu, J. Mahia, T. Parella, R. Xifra,
B. Hedman, K. O. Hodgson, A. Llobet and T. D. P. Stack, Angew.
Chem., Int. Ed., 2002, 41, 2991.
Scheme 2 Plausible reaction mechanism.
10636 | Chem. Commun., 2014, 50, 10634--10636
This journal is ©The Royal Society of Chemistry 2014