2596
K. Ghosh, G. Masanta / Tetrahedron Letters 49 (2008) 2592–2597
Acknowledgements
45
40
35
30
25
20
15
10
5
__
__
__
__
__
__
__
__
acetate
malonate
We thank DST (SR/FTP/CS-18/2004) and CSIR,
Government of India for financial support. G.M. thanks
CSIR, Govt. of India for a fellowship.
succinate
glutarate
adipate
pimelate
suberate
terepthalate
References and notes
1. Schmidtchen, F. P. Coord. Chem. Rev. 2006, 250, 2918–2928.
2. Amendola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc.
Chem. Res. 2006, 39, 343–353.
3. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419–
4476.
0
0
1
2
3
4
5
6
7
8
4. Schmidtchen, F. P.; Berger, M. Chem. Rev 1997, 97, 1609–1646.
5. Voet, D.; Voet, J. G. Biochemistry, 2nd ed.; Wiley: New York, NY,
1995.
[G]/[H]
Fig. 10. Fluorescence titration curves ([Guest]/[Host] vs change in
emission) for 1 (measured at 433 nm) with various anions.
6. Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.; Glynn, M. Org. Lett.
2002, 4, 2449–2452 and references cited therein.
7. Kral, V.; Andrievsky, A.; Sessler, J. L. J. Am. Chem. Soc. 1995, 117,
2953–2954.
8. Liu, S.-Y.; Fang, L.; He, Y.-B.; Chan, W.-H.; Yeung, K.-T.; Cheng,
Y.-K.; Yang, R.-H. Org. Lett. 2005, 7, 5825–5828.
9. Kacprzak, K.; Gawronski, J. Chem. Commun. 2003, 1532–1533.
10. Goodman, M. S.; Hamilton, A. D.; Weiss, J. J. Am. Chem. Soc. 1995,
117, 8447–8455.
11. Linton, B. R.; Goodman, M. S.; Fan, E.; van Arman, S. A.;
Hamilton, A. D. J. Org. Chem. 2001, 66, 7313–7319 and references
cited therein.
12. Kim, S. K.; Kang, B. G.; Koh, H. S.; Yoon, Y. J.; Jung, S. J.; Jeong,
B.; Lee, K.-D.; Yoon, J. Org. Lett. 2004, 6, 4655–4685 and references
cited therein.
13. Raker, J.; Glass, T. E. J. Org. Chem. 2002, 67, 6113–6116.
14. Jadhav, V. D.; Scmidtchen, F. P. Org. Lett. 2006, 8, 2329–2332 and
references cited therein.
34
32
30
28
26
24
22
20
18
16
15. Desiraju, G. R. Acc. Chem. Res. 2002, 35, 565–573.
16. Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253–4264.
17. Steiner, T.; Saenger, W. J. Chem. Soc., Chem. Commun. 1995, 2087–
2088.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
XG
18. Thallapally, P. K.; Katz, A. K.; Carrell, H. L.; Desiraju, G. R. Cryst.
Eng. Commun. 2003, 5, 87–92.
Fig. 11. Fluorescence Job plot of 1 with pimelate.
19. Schmuck, C.; Lex, J. Eur. J. Org. Chem. 2001, 1519–1523 and
references cited therein.
20. Huggins, M. T.; Lightner, D. A. J. Org. Chem. 2001, 66, 8402–
8410.
21. Marques, M. P. M.; da Costa, A. M. A.; Ribeiro-Claro, P. J. A. J.
Phys. Chem. A 2001, 105, 5292–5297.
22. Sutor, D. J. Nature 1962, 195, 68–69.
23. For a recent review on C–HÁ Á ÁO bonds see: Desiraju, G. R.; Steiner,
T. The weak Hydrogen Bonds in Structural Chemistry and Biology,
Oxford University Press, Oxford, 1999.
24. Receptor 1: Mp 270–274 ° C; 1H NMR (DMSO-d6, 400 MHz): d 11.2
(s, 2H, –NHCO–), 9.42 (s, 2H), 8.66–8.51 (br m, 8H), 8.08 (br s, 2H),
7.80 (br s, 4H), 7.62 (br s, 6H), 7.45 (br s, 6H), 7.13 (br s, 4H), 6.70 (d,
2H, J = 16 Hz); 13C NMR (DMSO-d6, 125 MHz): 165.5, 143.6, 140.4,
139.4, 135.2, 134.8, 134.5, 132.2, 131.4, 129.9, 129.4, 129.2, 128.9,
127.0, 125.5, 120.9, 57.1; FTIR: m cmÀ1 (KBr): 3373, 3106, 2926, 1682,
1623, 1589, 1547, 1499, 1454; UV (DMSO): (c = 3.40 Â 10À5 M) kmax
(nm) 306, 362, 384, 405. Mass (ES+): 797.0 [(MÀPF6)+1]+, 764.9,
651.2.
25. Energy minimization was carried out by MMX (PC Model Serena
Software 1993). Molecular modelling was performed using standard
constants, and the dielectric constant was maintained at 1.5.
26. Quinn, J. R.; Zimmerman, S. C. Org. Lett. 2004, 6, 1649–1652. and
references cited therein.
by the UV method (Table 2). From the values in Table 2, it
is clear that the open cleft of receptor 1 has marked selec-
tivity for pimelate over a wide range of dicarboxylates
more in the excited state than in the ground state. The con-
ventional N–HÁ Á ÁO, unconventional C–HÁ Á ÁO hydrogen
bonds and the charge–charge interactions are the responsi-
ble forces, which cooperatively contribute to the selectivity
of 1.
In conclusion, we have synthesized fluorescent receptor
1 based on a trans-pyridylcinnamide motif and investigated
its binding properties towards aliphatic dicarboxylates of
various chain lengths. It showed moderate selectivity for
long chain pimelate over a wide range of dicarboxylates
by exhibiting good ‘On–Off’ switchability, and more
importantly, the switching mode was opposite to that of
the previously reported urea analogue 2. This selectivity
was attributed to the simultaneous interplay of N–HÁ Á ÁO
and C–HÁ Á ÁO hydrogen bonds and charge–charge inter-
actions during complexation. We are presently exploring
the scope of this new hydrogen bonding synthon for the
design and synthesis of new task specific receptors.
27. Li, Z.; Ding, J.; Robertson, G.; Day, M.; Tao, Y. Tetrahedron Lett.
2005, 46, 6499–6502.