1928
Russ.Chem.Bull., Int.Ed., Vol. 62, No. 8, August, 2013
Egorov et al.
(0.175 g, 0.105 mmol) was dissolved in C6H6 (10 mL) with heatꢀ
ing (60 C) during 20 min. A blue solution obtained was concenꢀ
trated to 5 mL and kept at room temperature. The violet crystals
formed within 24 h, suitable for Xꢀray diffraction analysis, were
separated from the solution by decantation, washed with cold
benzene (5 C), and dried in air. The yield of compound 2 was
0.098 g (51 %). Found (%): C, 68.76; H, 8.32. C210H300Co6O30
(without solvent molecule). Calculated (%): C, 68.97; H, 8.21.
IR, /cm–1: 3453 m, 3427 m.br, 2964 v.s, 2905 m, 2869 m, 1689 m,
1668 m, 1617 m, 1578 v.s, 1478 m, 1461 s, 1442 s, 1396 v.s, 1364 s,
1334 m, 1288 m, 1271 m, 1249 m, 1202 w, 1163 w, 1130 v.w,
1025 w, 923 w, 898 m, 821 w, 791 m, 735 m, 703 m, 591 v.w,
550 v.w, 531 v.w, 487 v.w, 428 v.w.
Procedure B. The weighed amounts of CoCl2•6H2O (0.486 g,
2.042 mmol) and sodium 3,5ꢀdiꢀtertꢀbutylbenzoate (obtained by
mechanical trituration of 3,5ꢀdiꢀtertꢀbutylbenzoic acid (0.956 g,
4.084 mmol) and KOH (0.228 g, 4.084 mmol)) were placed into
a 25ꢀmL grinding vessel made of stainless steel and steel balls
(10 g, 2—8 mm diameter) were added. The mechanochemꢀ
ical synthesis was carried out on a Retsch MM 400 vibrating ball
mill for 2 h at the amplitude of 25 Hz, preliminary cooling down
the grinding vessels to –60 C every 30 min. A weighed amount
of the mixture obtained (0.152 g) was dissolved in C6H6 (10 mL)
with heating (60 C) during 15—20 min. A blue solution was
filtered from a white precipitate and kept at room temperature.
The violet crystals formed within 24 h, suitable for Xꢀray diffracꢀ
tion analysis, were separated from the solution by decantation,
washed with cold benzene (5 C), and dried in air. The crystalloꢀ
graphic parameters of the crystals (T = 181(2) K, triclinic P1,
a = 17.064(8), b = 22.889(10), c = 35.320(2) Å, = 95.090(10),
= 90.523(7), = 108.370(2), V = 13030(20) Å3) were the
same as those obtained for a single crystal of the compound
synthesized by procedure A (see Table 1).
Xꢀray diffraction studies of compounds 1 and 2•9C6H6 were
performed on a Bruker Apex II diffractometer equipped with
a CCDꢀdetector (MoꢀK, = 0.71073 Å, graphite monoꢀ
chromator).29 A semiempirical correction for the absorption was
made for both compounds.30 The structures of all the complexes
were solved by direct method. For compound 1, the refinement
was performed in the fullꢀmatrix anisotropic approximation for
all the nonhydrogen atoms. In the structure of compound 2, all
the atoms, except the carbon atoms of the benzene solvent molꢀ
ecule, were refined in the fullꢀmatrix anisotropic approximation
for all the nonhydrogen atoms. Positions of the methyl carbon
atoms of the disordered CMe3 fragments in 1 and 2•9C6H6 were
localized in differential Fourier synthesis. The occupation of the
disordered tertꢀbutyl group for 1: 0.339(15) and 0.661(15) at atom
C(12); for 2•9C6H6: 0.312(9) and 0.688(9) at atom C(53). The
H atoms at carbon and oxygen atoms of organic ligands were
generated geometrically and refined using the riding model.
The calculations were performed using the SHELXSꢀ97 and
SHELXLꢀ97 software.31 The crystallographic parameters and
refinement details of the structures are given in Table 1.
This work was financially supported by the Russian
Foundation for Basic Research (Project Nos 11ꢀ03ꢀ00735
and 13ꢀ03ꢀ12430), the Council on Grants at the President
of the Russian Federation (Program of State Support for
Leading Scientific Schools of the Russian Federation,
Grants NShꢀ2357.2012.3 and NShꢀ1670.2012.3), the Preꢀ
sidium of the Russian Academy of Sciences.
References
1. I. G. Fomina, G. G. Aleksandrov, Zh. V. Dobrokhotova,
O. Yu. Proshenkina, M. A. Kiskin, Yu. A. Velikodny, V. N.
Ikorski, V. M. Novotortsev, I. L. Eremenko, Russ. Chem.
Bull. (Int. Ed.), 2006, 55, 1909 [Izv. Akad. Nauk, Ser. Khim.,
2006, 1841].
2. G. G. Aleksandrov, I. G. Fomina, A. A. Sidorov, T. B.
Mikhailova, V. I. Zhilov, V. N. Ikorski, V. M. Novotortsev,
I. L. Eremenko, I. I. Moiseev, Russ. Chem. Bull. (Int. Ed.),
2004, 53, 1200 [Izv. Akad. Nauk, Ser. Khim., 2004, 1153].
3. A. A. Sidorov, M. E. Nikiforova, E. V. Pakhmutova, G. G.
Aleksandrov, V. N. Ikorski, V. M. Novotortsev, I. L. Ereꢀ
menko, I. I. Moiseev, Russ. Chem. Bull. (Int. Ed.), 2006, 55,
1920 [Izv. Akad. Nauk, Ser. Khim., 2006, 1851].
4. M. A. Kiskin, G. G. Aleksandrov, A. S. Bogomyakov, V. M.
Novotortsev, I. L. Eremenko, Inorg. Chem. Commun., 2008,
11, 1015.
5. M. A. Bykov, A. L. Emelina, E. V. Orlova, M. A. Kiskin, G. G.
Aleksandrov, A. S. Bogomyakov, Zh. V. Dobrokhotova, V. M.
Novotortsev, I. L. Eremenko, Zh. Inorg. Khim., 2009, 54,
601 [J. Inorg. Chem. (Engl. Transl.), 2009, 54].
6. I. L. Eremenko, V. M. Novotortsev, A. A. Sidorov,
M. A. Kiskin, Russ. Khim. Zh., 2009, 53, 16 [Mendeleev.
Chem. J. (Engl. Transl.), 2009, 53].
7. E. V. Orlova, A. E. Goldberg, M. A. Kiskin, P, S. Koroteev,
A. L. Emelina, M. A. Bykov, G. G. Aleksandrov, Zh. V.
Dobrokhotova, V. M. Novotortsev, I. L. Eremenko, Russ.
Chem. Bull. (Int. Ed.), 2011, 60, 2236 [Izv. Akad. Nauk, Ser.
Khim., 2011, 2195].
8. K. Tokarev, M. Kiskin, A. Sidorov, G. Aleksandrov, A. Bogoꢀ
myakov, V. Novotortsev, I. Eremenko, Polyhedron, 2009,
28, 2010.
9. N. V. Zauzolkova, M. E. Nikiforova, M. A. Kiskin, A. S.
Bogomjakov, A. A. Sidorov, I. L. Eremenko, Russ. Chem.
Bull. (Int. Ed.), 2011, 60, 273 [Izv. Akad. Nauk, Ser. Khim.,
2011, 267].
10. N. P. Burkovskaya, M. E. Nikiforova, M. A. Kiskin, A. S.
Lermontov, A. S. Bogomyakov, V. S. Mironov, Zh. V. Doꢀ
brokhotova, V. I. Pekhnyo, A. A. Sidorov, V. M. Novotorꢀ
tsev, I. L. Eremenko, Polyhedron, 2011, 30, 2941.
11. M. A. Golubnichaya, A. A. Sidorov, I. G. Fomina, M. O.
Ponina, S. M. Deomidov, S. E. Nefedov, I. L. Eremenko,
I. I. Moiseev, Russ. Chem. Bull. (Engl. Transl.), 1999, 48,
1751 [Izv. Akad. Nauk, Ser. Khim., 1999, 1773].
12. A. W. Addison, T. N. Rao, J. Chem. Soc., Dalton Trans.,
1984, 1349.
13. J. Catterick, M. B. Hursthouse, D. B. New, P. Thornton,
Chem. Commun., 1974, 843.
The authors are grateful to G. A. Buzanov for his help
in carrying out the mechanochemical synthesis.
Xꢀray diffraction analysis was performed in the Center
of Collective Exploitation of N. S. Kurnakov Institute of
General and Inorganic Chemistry, Russian Academy of
Sciences.
14. K. S. Gavrilenko, S. V. Punin, O. Cador, S. Golhen, L. Ouahꢀ
ab, V. V. Pavlishchuk, J. Am. Chem. Soc., 2005, 127, 12246.