Communication
ChemComm
8 S. J. Pierre, J. C. Thies, A. Dureault, N. R. Cameron, J. C. M. van Hest,
N. Carette, T. Michon and R. Weberskirch, Adv. Mater., 2006, 18,
1822–1826.
micropore surface engineering. The tert-butyl carboxylate (Boc)
group was introduced as a spacer into the micropores of the
cross-linked polymer networks. The BET surface of the porous
polymers can be increased by a factor of eight in the best cases.
They exhibit porosity with the pore size ranging from micro-
meters to nanometers. The photocatalytic activity of the conju-
gated porous polymers was demonstrated via photooxidation of
organic sulfides to sulfoxides under visible light, achieving an
almost quantitative conversion and selectivity in the best cases.
It is worth noting that high surface areas did not play a crucial
role with respect to the photocatalytic efficiency. Nanometer
sized pores of ca. 1.5 nm are indeed insufficient for reactants to
diffuse in. The more important factor was the electronic structure,
i.e. the donor and acceptor combination of the polymer backbone,
with the best photocatalytic activity being shown by the polymer
containing the benzothiadiazole unit as a strong acceptor. This is
in consonance with the lower optical HOMO–LUMO band gap
values of the BT containing polymers resulting from the signifi-
cantly low LUMO levels of the polymers. Nevertheless, conjugated
porous polyHIPEs still offer a new class of stable visible light-
driven heterogeneous catalytic systems. By incorporation of the
insoluble polymers into a glass column reactor, the product can
be obtained continuously without separation from the catalysts.
The Max Planck Society is acknowledged for financial support.
9 F. Su, C. L. Bray, B. Tan and A. I. Cooper, Adv. Mater., 2008, 20,
2663–2666.
¨
10 E. H. Mert, H. Yıldırım, A. T. Uzu¨mcu¨ and H. Kavas, React. Funct.
Polym., 2013, 73, 175–181.
11 M. Ottens, G. Leene, A. A. C. M. Beenackers, N. Cameron and
D. C. Sherrington, Ind. Eng. Chem. Res., 2000, 39, 259–266.
12 W. L. Li, W. J. Zhang, X. Q. Dong, L. S. Yan, R. G. Qi, W. C. Wang,
Z. G. Xie and X. B. Jing, J. Mater. Chem., 2012, 22, 17445–17448.
13 K. Zhang, Z. Vobecka, K. Tauer, M. Antonietti and F. Vilela,
Chem. Commun., 2013, 49, 11158–11160.
14 P. Saint-Cricq, T. Pigot, L. Nicole, C. Sanchez and S. Lacombe,
Chem. Commun., 2009, 5281–5283.
15 A. Sanjuan, G. Aguirre, M. Alvaro and H. Garcia, Appl. Catal., B, 1998,
15, 247–257.
16 I. Pulko and P. Krajnc, Macromol. Rapid Commun., 2012, 33, 1731–1746.
17 S. D. Kimmins and N. R. Cameron, Adv. Funct. Mater., 2011, 21, 211–225.
18 A. Barbetta, M. Dentini, L. Leandri, G. Ferraris, A. Coletta and
M. Bernabei, React. Funct. Polym., 2009, 69, 724–736.
19 M. G. Schwab, I. Senkovska, M. Rose, N. Klein, M. Koch, J. Pahnke,
G. Jonschker, B. Schmitz, M. Hirscher and S. Kaskel, Soft Matter,
2009, 5, 1055–1059.
20 I. Pulko, J. Wall, P. Krajnc and N. R. Cameron, Chem. – Eur. J., 2010,
16, 2350–2354.
ˇ
ˇ
21 U. Sevsek, J. Brus, K. Jerabek and P. Krajnc, Polymer, 2014, 55, 410–415.
22 A. Padwa, W. H. Bullock and A. D. Dyszlewski, J. Org. Chem., 1990,
55, 955–964.
23 I. Fernandez and N. Khiar, Chem. Rev., 2003, 103, 3651–3705.
¨
24 J.-E. Backvall, Modern oxidation methods, Wiley-VCH, Weinheim,
Germany, 2nd edn 2010.
25 K. Kaczorowska, Z. Kolarska, K. Mitka and P. Kowalski, Tetrahedron,
2005, 61, 8315–8327.
26 J. Perles, M. Iglesias, C. Ruiz-Valero and N. Snejko, J. Mater. Chem.,
2004, 14, 2683–2689.
Notes and references
1 L. Chen, Y. Honsho, S. Seki and D. Jiang, J. Am. Chem. Soc., 2010, 27 J. Perles, M. Iglesias, M. A. Martin-Luengo, M. A. Monge, C. Ruiz-
132, 6742–6748.
Valero and N. Snejko, Chem. Mater., 2005, 17, 5837–5842.
28 D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi,
V. P. Fedin and K. Kim, Angew. Chem., Int. Ed., 2006, 45, 916–920.
29 L. Chen, Y. Yang and D. L. Jiang, J. Am. Chem. Soc., 2010, 132, 9138–9143.
2 A. I. Cooper, Adv. Mater., 2009, 21, 1291–1295.
3 Y. Chen, J. Zhang, M. Zhang and X. Wang, Chem. Sci., 2013, 4,
3244–3248.
4 X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. 30 F. Z. Su, S. C. Mathew, G. Lipner, X. Z. Fu, M. Antonietti, S. Blechert
Carlsson, K. Domen and M. Antonietti, Nat. Mater., 2009, 8, 76. and X. C. Wang, J. Am. Chem. Soc., 2010, 132, 16299–16301.
5 F. Vilela, K. Zhang and M. Antonietti, Energy Environ. Sci., 2012, 5, 31 X. C. Wang, K. Maeda, X. F. Chen, K. Takanabe, K. Domen, Y. D. Hou,
7819–7832. X. Z. Fu and M. Antonietti, J. Am. Chem. Soc., 2009, 131, 1680–1681.
6 M. Bokhari, R. J. Carnachan, N. R. Cameron and S. A. Przyborski, 32 Y. Chen, J. S. Zhang, M. W. Zhang and X. C. Wang, Chem. Sci., 2013,
Biochem. Biophys. Res. Commun., 2007, 354, 1095–1100. 4, 3244–3248.
7 N. Dizge, B. Keskinler and A. Tanriseven, Colloids Surf., B, 2008, 66, 33 K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti and F. Vilela,
34–38.
Angew. Chem., Int. Ed., 2013, 52, 1432–1436.
8180 | Chem. Commun., 2014, 50, 8177--8180
This journal is ©The Royal Society of Chemistry 2014