Communication
ChemComm
convenient construction of potent probes for feasible clinical
applications.
Financial support for this research from the National Natural
Science Foundation of China (21475042), the Natural Science
Foundation of Hunan Province (2016JJ4060), the Open Fund
Project of State Key Laboratory of Chemo/Biosensing and Chemo-
metrics in Hunan University (201103) and Program for Science
and Technology Innovative Research Team in Higher Educational
Institutions of Hunan Province is gratefully acknowledged.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) R. Lever and C. P. Page, Nat. Rev. Drug Discovery, 2002, 1, 140–148;
(b) F. Peysselon and S. Ricard-Blum, Matrix Biol., 2014, 35, 73–81.
2 (a) B. I. Karawdeniya, Y. M. N. D. Y. Bandara, J. W. Nichols,
R. B. Chevalier and J. R. Dwyer, Nat. Commun., 2018, 9, 3278;
(b) G. H. Aryal, G. R. Rana, F. Guo, K. W. Hunter and L. Huang,
Chem. Commun., 2020, 56, 13437–13440.
Fig. 4 (A) Cell viability test using MTT assay. (B–D) Confocal fluorescence
microscopy images of OFPNPs (35 mg mLÀ1) in MCF-7 cells: (B) bright-field
image, (C) image acquired with 405 nm excitation and (D) the overlay of
bright-field and fluorescence images.
3 J. Cui, S. Zang, W. Shu, H. Nie, J. Jing and X. Zhang, Anal. Chem.,
2020, 92, 7106–7113.
4 A. A. Ensafi, N. Kazemifard and B. Rezaei, Biosens. Bioelectron., 2015,
71, 243–248.
of OFPNPs according to a previous report.11b As shown in Fig. 4A,
relatively high cell viability (485%) could be achieved when
the concentration of OFPNPs increased from 5.0 mg mLÀ1 to
35.0 mg mLÀ1, suggesting that OFPNPs possess low cytotoxicity.18
Obviously, the emission spectra of OFPNPs exhibited an
excitation-dependent feature (Fig. S11A, ESI†) and the fluores-
cence intensity decreased abruptly when the excitation wavelength
changed from 300 nm to 400 nm. Hence, a relatively higher
concentration of OFPNPs was chosen for cell imaging according
to Fig. S11B (ESI†). As demonstrated in Fig. 4B–D, MCF-7 cells
showed bright blue fluorescence after incubation with 35.0 mg
mLÀ1 OFPNPs for 30 minutes. The results suggested that OFPNPs
successfully entered MCF-7 cells and distributed primarily along
the cell membrane and in the cytoplasm, indicating the good
5 (a) G. A. Crespo, M. G. Afshar and E. Bakker, Angew. Chem., Int.
Ed., 2012, 51, 12575–12578; (b) X. Fu, L. Chen, J. Li, M. Lin, H. You
and W. Wang, Biosens. Bioelectron., 2012, 34, 227–231; (c) R. Vidya
and A. Saji, Anal. Bioanal. Chem., 2018, 410, 3053–3058; (d) R. S.
Dey and C. R. Raj, Chem. – Asian J., 2012, 7, 417–424; (e) S. Yan,
Y. Tang and M. Yu., RSC Adv., 2015, 5, 59603–59608.
6 (a) Y. Xu, R. Xu, Z. Wang, Y. Zhou, Q. Shen, W. Ji, D. Dang, L. Meng
and B. Z. Tang, Chem. Soc. Rev., 2021, 50, 667–690; (b) L. Yang,
J. Zheng, Z. Zou, H. Cai, P. Qi, Z. Qing, Q. Yan, L. Qiu, W. Tan and
R. Yang, Chem. Commun., 2020, 56, 1843–1846.
7 (a) X. Wang, Q. Jiang, Y. Man, S. Feng, Y. I. Lee and H. G. Liu, Sens.
Actuators, B, 2018, 261, 233–240; (b) J. Liu, G. Liu, W. Liu and
Y. Wang, Biosens. Bioelectron., 2015, 64, 300–305; (c) H. Chen,
A. Fang, Y. Zhang and S. Yao, Talanta, 2017, 174, 148–155;
(d) H. Li and X. Yang, Anal. Methods, 2015, 7, 8445–8452; (e) F. Qu,
X. Li, X. Lv, J. You and W. Han, J. Mater. Sci., 2019, 54, 3144–3155.
8 A. I. Gopalan, S. Komathi, N. Muthuchamy, K. P. Lee, M. J. Whitcombe,
L. Dhana and G. Sai-Anand, Prog. Polym. Sci., 2019, 88, 1–129.
9 K. Y. Pu and B. Liu, Macromolecules, 2008, 41, 6636–6640.
penetration ability, high fluorescence intensity and low cytotoxi- 10 Q. Chen, Y. Cui, J. Cao and B. H. Han, Polymer, 2011, 52, 383–390.
11 (a) H. Shi, X. Chen, S. Liu, H. Xu, Z. An, L. Ouyang, Z. Tu, Q. Zhao,
city of ultra-small OFPNP nanomaterials, which is favorable for
Q. Fan, L. Wang and W. Huang, ACS Appl. Mater. Interfaces, 2013, 5,
4562–4568; (b) J. Jiang, C. Zhang, W. Lin, Y. Liu, S. Liu, Y. Xu, Q. Zhao
cell imaging and related potential applications.11b,12
In summary, a prototype was proposed for the simple synthesis
of the cationic conjugated oligoelectrolyte OFP via one-pot Sonoga-
shira coupling and a novel and ultrafine fluorene–pyridine nanop-
and W. Huang, Macromol. Rapid Commun., 2015, 36, 640–646.
12 (a) H. Chen, X. Fang, Y. Jin, X. Hu, M. Yin, X. Men, N. Chen, C. Fan,
D. T. Chiu, Y. Wan and C. Wu, Small, 2018, 14, 1800239; (b) G. Feng,
J. Liu, R. Liu, D. Mao, N. Tomczak and B. Liu, Adv. Sci., 2017, 4, 1600407.
robe, i.e. OFPNPs of only B 1.2 nm in diameter, was first fabricated 13 (a) Q. Zhao, X. Zhou, T. Cao, K. Y. Zhang, L. Yang, S. Liu, H. Liang,
H. Yang, F. Li and W. Huang, Chem. Sci., 2015, 6, 1825–1831;
(b) L. Zhou, F. Lv, L. Liu, G. Shen, X. Yan, G. C. Bazan and
S. Wang, Adv. Mater., 2018, 30, 1704888.
for the ultrasensitive and selective detection of Hep and Pro.
Positively charged OFPNPs can interact with highly anionic heparin
to form agglomerates of OFPNPs/Hep via electrostatic effects, 14 (a) D. Bu¨cker, A. Sickinger, J. D. Ruiz Perez, M. Oestringer,
S. Mecking and M. Drescher, J. Am. Chem. Soc., 2020, 142,
1952–1956; (b) J. Li and K. Pu, Acc. Chem. Res., 2020, 53, 752–762.
15 (a) S. Zhang, R. Liu, Q. Cui, Y. Yang, Q. Cao, W. Xu and L. Li,
thereby causing fluorescence quenching of OFPNPs. In turn,
protamine-triggered rebinding of Hep/Pro can result in the fluores-
cence recovery of OFPNPs by forming a more stable ion-pair
complex between Hep and Pro. Under the optimized conditions,
the detection limits for heparin and protamine assays were as low as
1.2 ng mLÀ1 and 0.5 ng mLÀ1, respectively. In addition, OFPNPs
with bright blue fluorescence and low cytotoxicity even at a high
dose (35.0 mg mLÀ1) can be used for imaging of live cells. This
ultrafine oligoelectrolyte nanoplatform may thus promote the
ACS Appl. Mater. Interfaces, 2017, 9, 44134–44145; (b) Y. Koizumi,
S. Seki, S. Tsukuda, S. Sakamoto and S. Tagawa, J. Am. Chem. Soc.,
2006, 128, 9036–9037.
16 (a) H. Huang, K. Wang, W. Tan, D. An, X. Yang, S. Huang, Q. Zhai,
L. Zhou and Y. Jin, Angew. Chem., Int. Ed., 2004, 43, 5635–5638;
(b) C. Wu and D. T. Chiu, Angew. Chem., Int. Ed., 2013, 52, 3086–3109.
17 N. Basu and D. Mandal, Carbon, 2019, 144, 500–508.
18 W. Zhang, W. Lin, X. Wang, C. Li, S. Liu and Z. Xie, ACS Appl. Mater.
Interfaces, 2019, 11, 278–287.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 8304–8307 | 8307