Journal of the American Chemical Society
Communication
1540663 (29) contains the supplementary crystallographic data for
this paper. The data can be obtained free of charge from the
AUTHOR INFORMATION
Corresponding Author
Notes
■
(9) (a) Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. Chem. Sci.
2013, 4, 4022. (b) Fujita, T.; Arita, T.; Ichitsuka, T.; Ichikawa, J.
Dalton Trans. 2015, 44, 19460.
(10) For previous reports combining TDAE with nickel catalysis, see:
(a) Anka-Lufford, L.; Huihui, K. M. M.; Gower, N. J.; Ackerman, L. K.
G.; Weix, D. J. Chem. - Eur. J. 2016, 22, 11564. (b) Kuroboshi, M.;
Tanaka, M.; Kishimoto, S.; Goto, K.; Mochizuki, M.; Tanaka, H.
Tetrahedron Lett. 2000, 41, 81. (c) Broggi, J.; Terme, T.; Vanelle, P.
Angew. Chem., Int. Ed. 2014, 53, 384.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the European Research Council (ERC Starting grant
agreement no. 307948) and the Swiss National Science
Foundation (SNF 200020_146853) for financial support. We
also thank Prof. Anthony Linden for the X-ray diffraction
analysis of 29.
(11) The reaction with aryl bromides proceeded, albeit with lower
efficiency. Primary and secondary alkyl iodides could not be
successfully coupled. For these and additional examples exploring
(12) Newcomb, M.; Filipkowski, M. A.; Johnson, C. C. Tetrahedron
Lett. 1995, 36, 3643.
(13) Fischer, H.; Radom, L. Angew. Chem., Int. Ed. 2001, 40, 1340.
(14) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
(15) TDAE is transformed into [TDAE2+][I−]2 under the reaction
conditions. For this and additional control experiments on the role of
TDAE and other reductants, see section 5 in the Supporting
REFERENCES
■
(1) (a) Chapdelaine, M. J.; Hulce, M. Org. React. 1990, 38, 225.
(b) Ihara, M.; Fukumoto, K. Angew. Chem., Int. Ed. Engl. 1993, 32,
1010.
(2) (a) Urkalan, K. B.; Sigman, M. S. Angew. Chem., Int. Ed. 2009, 48,
3146. (b) Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. J. Am. Chem.
Soc. 2011, 133, 5784. (c) McCammant, M. S.; Liao, L.; Sigman, M. S. J.
Am. Chem. Soc. 2013, 135, 4167. (d) Liu, Z.; Zeng, T.; Yang, K. S.;
Engle, K. M. J. Am. Chem. Soc. 2016, 138, 15122. (e) Stokes, J. B.;
Liao, L.; de Andrade, A. M.; Wang, Q.; Sigman, M. S. Org. Lett. 2014,
16, 4666. (f) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han, Z.-Y.; Gong,
L.-Z. J. Am. Chem. Soc. 2015, 137, 13476.
(3) (a) Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem.
Soc. 2014, 136, 10202. (b) Wu, L.; Wang, F.; Wan, X.; Wang, D.;
Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904. (c) Ouyang, X.-
H.; Song, R.-J.; Hu, M.; Yang, Y.; Li, J.-H. Angew. Chem., Int. Ed. 2016,
55, 3187. For metal-free protocols, see: (d) Beniazza, R.; Liautard, V.;
Poittevin, C.; Ovadia, B.; Mohammed, S.; Robert, F.; Landais, Y. Chem.
- Eur. J. 2017, 23, 2439.
(16) (a) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.;
Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896. (b) Schley, N. D.;
Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.
(17) For selected references on recent Ni-catalyzed reactions
invoking radical intermediates, see: (a) Schmidt, J.; Choi, J.; Liu, A.
T.; Slusarczyk, M.; Fu, G. C. Science 2016, 354, 1265. (b) Wang, J.;
Chen, T.-G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.;
Shaw, S. A.; Baran, P. S.; Qin, T. Angew. Chem., Int. Ed. 2016, 55, 9676.
(c) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138,
13862. (d) Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci.
(4) (a) Terao, J.; Bando, F.; Kambe, N. Chem. Commun. 2009, 7336.
(b) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.;
Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science
2016, 352, 801.
(5) (a) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Angew. Chem., Int.
Ed. 2016, 55, 12270.
(6) For selected examples, see: (a) Everson, D. A.; Jones, B. A.; Weix,
D. J. J. Am. Chem. Soc. 2012, 134, 6146. (b) Kadunce, N. T.; Reisman,
S. E. J. Am. Chem. Soc. 2015, 137, 10480. (c) Arendt, K. M.; Doyle, A.
G. Angew. Chem., Int. Ed. 2015, 54, 9876. (d) Huihui, K. M. M.;
Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson,
K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J.
Am. Chem. Soc. 2016, 138, 5016. (e) Konev, M. O.; Hanna, L. E.;
Jarvo, E. R. Angew. Chem., Int. Ed. 2016, 55, 6730. (f) Wang, X.;
Nakajima, M.; Serrano, E.; Martin, R. J. Am. Chem. Soc. 2016, 138,
15531. For examples of reductive alkylarylations in an intramolecular
fashion, see: (g) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem.
Soc. 2015, 137, 11562. (h) Peng, Y.; Xiao, J.; Xu, X.-B.; Duan, S.-M.;
Ren, L.; Shao, Y.-L.; Wang, Y.-W. Org. Lett. 2016, 18, 5170. (i) Peng,
Y.; Xu, X.-B.; Xiao, J.; Wang, Y.-W. Chem. Commun. 2014, 50, 472.
(j) Yan, C.-S.; Peng, Y.; Xu, X.-B.; Wang, Y.-W. Chem. - Eur. J. 2012,
18, 6039. (k) Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Org. Lett.
2011, 13, 2138. For selected reviews on Ni-catalyzed reductive
couplings, see: (l) Moragas, T.; Correa, A.; Martin, R. Chem. - Eur. J.
2014, 20, 8242. (m) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet,
̈
M.; Gosmini, C.; Jacobi von Wangelin, A. Chem. - Eur. J. 2014, 20,
6828. (n) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767. (o) Gu, J.; Wang,
X.; Xue, W.; Gong, H. Org. Chem. Front. 2015, 2, 1411.
́ ́
(7) (a) Fuentes, N.; Kong, W.; Fernandez-Sanchez, L.; Merino, E.;
Nevado, C. J. Am. Chem. Soc. 2015, 137, 964. (b) Li, Z.; García-
Domínguez, A.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 11610. (c) Li,
Z.; García-Domínguez, A.; Nevado, C. Angew. Chem., Int. Ed. 2016, 55,
6938. (d) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C.
Chem. Sci. 2016, 7, 3914. (e) Shu, W.; Lorente, A.; Gom
́
ez-Bengoa, E.;
Nevado, C. Nat. Commun. 2017, 8, 13832.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX