2
+
Chem. 2008, 43, 1983.
0. Yi, W.; Cao, R. H.; Chen, Z. Y.; Yu, L.; Ma, L.; Song, H. C.
Chem. Pharm. Bull. 2009, 57, 1273.
of hydroxyl groups than sulfur/nitrogen groups for Cu
2
ions. For the best tyrosinase inhibitor (Thio-2), it was able
to interact with His-155, Gly-170 and Val-172 residues. The
21. Coxon, G. D.; Craig, D.; Corrales, R. M.; Vialla, E.; Gannoun-
Zaka, L.; Kremer, L. PLoS ONE 2013, 8, e53162.
values of Kmap and K were in accordance with the inhibitory
i
2
2. The organic compounds were solubilized in dimethylsulfoxide
VETEC) (10 mM) and different aliquots of the stock solution
power and the type of inhibition mechanism investigated for
each compound. Thio-3 and Thio-4 showed the best
inhibitory effects at maintained the inhibition for a
significant time. Curves obtained by UV-Vis spectroscopy
indicated inhibition of the competitive type of mechanism
for compounds which structurally resembled the substrate
used, but in other cases the double reciprocal technique was
more appropriate. Further investigations are warranted to
explore their potential application in the management of
hyperpigmentation and melanoma cases.
(
were added to the reaction medium containing the tyrosinase
mushroom enzyme (50–100 units), EDTA (0.022 mmol/L) and
L-DOPA (0.17 mmol/L), all acquired for Sigma-Aldrich, in
PBS (50 mmol/L, pH 6.8) at room temperature. The time for
diphenolase to oxidize L-DOPA was 30 min and the readings
were performed in a UV-Vis spectrophotometer (Shimadzu,
model Mini 1240, Japan) at 475 nm.
2
3. Liang-Hu, C.; Yong-Hu, H.; Wei, S.; Kang-Kang, S.; Xuan, L.;
Yu-Long, J.; Jiang-Xing Z.; Qing-Xi, C. Agric. Food Chem.
2012, 60, 1542.
4. Wei, Y.; Rihui, C.; Wenlie, P.; Huan, W.; Qin, Y.; Binhua, Lin,
Z. M.; Huacan, S. Eur. J. Med. Chem. 2010, 45, 639.
5. Chaves, O. A.; de Barros, L. S.; de Oliveira, M. C. C.;
Sant’Anna, C. M. R.; Ferreira, A. B. B.; da Silva, F. A.;
Cesarin-Sobrinho, D.; Netto-Ferreira, J. C. J. Fluor. Chem.
2
2
Acknowledgments
2
017, 199, 30.
6. Thiosemicarbazones structures (Thio-1
Thio-5 Thio-6 Thio-7 and Thio-8) were built and energy-
The authors sincerely acknowledge the Brazilian
agencies: Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES), Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) and
Fundação de Amparo à Pesquisa do Estado do Rio de
Janeiro (FAPERJ) for the financial support. The authors also
thank Prof. Carlos M. R. Sant’Anna (Department of
Chemistry-UFRRJ) for the molecular docking facilities.
2
, Thio-2, Thio-3, Thio-
4
,
,
,
minimized with the Density Functional Theory (DFT), method
Becke-3-Lee Yang Parr (B3LYP) with the standard 6-31G*
basis set, available in Spartan'14 program (Wavefunction, Inc.).
The molecular docking exercises were performed with GOLD
5.2 program. Hydrogen atoms were added to the protein (PDB
2
Y9X) according to the data inferred by the GOLD 5.2
program on the ionization and tautomeric states. A 10 Å radius
spherical cavity around the dicopper center which is
-
responsible for the tyrosinase activity - was defined as the
binding site for the molecular docking calculations. The
scoring function used was ‘GoldScore’, due the best result
obtained by the redocking studies - ligand tropolone. The
figures of the docking poses for the largest docking score value
were generated with the PyMOL Delano Scientific LLC
program.
References
1
.
Bloethner, S.; Scherer, D.; Drechsel, M.; Hemminki, K.;
Kumar, R.; Bloethner, S. Actas Dermosifiliogr. 2009, 100
(Suppl 1), 38.
2
.
Ismaya, W. T.; Rozeboom, H. J.; Weijn, A.; Mes, J. J.; Fusetti,
2
2
7. Segel, I. H. Cálculos de Bioquímica, 2ª ed., Acribia Editorial,
ISBN 9788420005041, 287-331.
8. C. Shipman Jr, C.; Smith, S. H.; Drach, J. C.; Klayman, D. L.;
F.; Wichers, H. J.; Dijkstra, B. W. Biochemistry. 2011, 50,
5
477.
3
4
5
6
.
.
.
.
Gupta, A. K.; Gover, M. D.; Nouri, K.; Taylor, S. J. Am. Acad.
Dermatol. 2006, 55, 1048.
Okombi, S.; Rival, D.; Bonnet, S.; Mariotte, A.; Perrier, E.;
Boumendjel, A. Bioorg. Med. Chem. Lett
Oozeki, H.; Tajima, R.; Nihei, K. Bioorg. Med. Chem. Lett.
008, 18, 525.
. 2006, 16, 2252.
2
Nesterov, A.; Zhao, J.; Minter, D.; Hertel, C.; Ma, W.;
Abeysinghe, P.; Hong, M.; Jia, Q. Chem. Pharm. Bull. 2008
,
5
6, 129.
7
8
.
.
.
Hyun, S. K.; Lee, W. H.; Jeong, D. M.; Kim, Y.; Choi, J. S.
Biol. Pharm. Bull. 2008, 31, 154.
Huang, X.; Chen, Q.; Wang, Q.; Song, K.; Wang, J.; Sha, L.;
Guan, X. Food Chem. 2006, 59, 1.
Lee, H.; J. Agric. Food Chem. 2002, 47, 1400.
9
1
0. Liu, J.; Yi, W.; Wan, L. M.; Song, H.; Bioorg. Med. Chem.
008, 16, 1092.
1. Chen, Q.; Song, K.; Qiu, L.; Liu, X.; Huang, H. Food Chem.
005, 91, 269.
2
1
2
1
2. Caixeiro, J. M. R.; Gonçalves, V. T.; Oliveira, M. C. C.;
Sant’Anna, C. M. R.; Rumjanek,V. M.; DaCosta, J. B. N. J.
Braz. Chem. Soc., 2012, 23, 804.
1
1
1
1
1
1
1
4.
5.
Beraldo, H.; Gambino, D. Mini-Rev. Med. Chem. 2004
,
6. Pahontu, E.; Julea, F.; Rosu, T.; Purcarea, V.; Chumakov, Y.;
Petrenco, P.; Gulea, A. J.; Cell. Mol. Med. 2015, 19, 865.
7. Zahra, A.; Ekk, S. S.; Weisheng, L.; Yinfa, M.; Charles, C.;
Subhash, P. J. Inorg. Biochem. 2005, 99, 1526.
8. Fabián, L.; Caputto, M. E.; Finkielsztein, L. M.; Moltrasio, G.
Y.; Moglioni, A. G. Molec. Medic. Chem. 2007, 12, 70.
9. de Oliveira, R. B.; de Souza-Fagundes, E. M.; Soares, R. P.
P.;Andrade, A. A.; Krettli, A. U.; Zani, C. L. Eur. J. Med.