R. Santhakumari, K. Ramamurthi / Spectrochimica Acta Part A 78 (2011) 653–659
659
model 8563) after being monochromated (monochromator-model
Triax-550) to collect only the 532 nm radiation. The optical sig-
nal incident on the PMT was converted into voltage output at the
CRO (Tektronix-TDS 3052B). The input laser energy incident on the
powdered sample was chosen to be 3.4 mJ. Powder SHG efficiency
obtained for BTSC monohydrate is about 5.3 times that of potas-
sium dihydrogen orthophosphate crystal. This may be due to the
existence of intermolecular N–H· · ·N and N–H· · ·S hydrogen bonds
and N–H· · ·O and O–H· · ·S hydrogen bonds due to water molecules
in BTSC, which link the molecules into ribbons extended along the
a-axis [12].
Chemistry, Indian Institute of Science, Bangalore for extending the
laser facilities for the SHG measurement.
References
[
[
[
[
1] G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J.M. Benitez, J. Alloys Comp.
01 (2004) 303–304.
2] P. Tansuri, K. Tansuree, B. Gabriele, R. Lara, J. Cryst. Growth Des. 4 (2004)
743–747.
4
3] B.J. McArdle, J.N. Sherwood, A.C. Damask, J. Cryst. Growth 22 (1974)
193–200.
4] M. Aravindhan, K. Sankaranarayanan, K. Ramamurthy, C. Sanjeeviraja, P.
Ramasamy, Thin Solid Films 477 (2005) 2–6.
[
[
[
[
5] S. Ayers, M.M. Faktor, D. Marr, J.L. Stevensons, J. Mater. Sci. 7 (1972) 31–33.
6] H. Beraldo, D. Gambino, Mini Rev. Med. Chem. 4 (2004) 31–39.
7] S. Bondock, K. Halifa, A.A. Fadda, J. Med. Chem. 42 (2007) 948–954.
8] D. Govanni, F.G. Giovanna, N. Mario, S. Paolo, Acta Crystallogr. B26 (1970)
1005–1009.
4
. Conclusion
Well developed transparent benzaldehyde thiosemicarbazone
[
9] D. Govanni, F.G. Giovanna, N. Mario, S. Paolo, Acta Crystallogr. B25 (1969)
monohydrate single crystal of dimensions 10 mm × 10 mm × 3 mm
3
43–349.
10] D. Muharrem, O. Namik, Acta Crystallogr. E61 (2005) o880–o883.
[11] D. Muharrem, O. Namik, Acta Crystallogr. C62 (2005) o13–o15.
◦
was grown by the slow evaporation technique at 30 C. Determi-
[
nation of unit cell constants by the single crystal X-ray diffraction
technique confirmed the identity of the synthesized material. FTIR
spectral studies confirmed the presence of functional groups of
BTSC monohydrate crystal. Optical transmittance window and the
lower cut off wavelength identified through UV–vis–NIR spectrum
reveal that BTSC monohydrate is a potential candidate for second
harmonic generation. The high transmission, low absorbance, low
reflectance and low refractive index of BTSC in the UV–vis–NIR
make the material a prominent one for antireflection coating in
solar thermal devices. Thus BTSC with many attracting linear
and nonlinear optical properties is a suitable candidate for opto-
electronic applications. Vickers microhardness study reveals the
mechanical strength of the BTSC monohydrate crystal. TGA and
[
[
[
12] S.-J. Gu, K.-M. Zhu, Acta Crystallogr. E64 (2008) o1597–o1604.
13] J.N. Sherwood, Pure Appl. Opt. 7 (1998) 229–238.
14] A. Holden, P. Singer, Crystals and Crystal Growing, Double Day and Company
Inc., New York, 1960.
[
[
15] T. Balakrishnan, K. Ramamurthi, Spectrochim. Acta 68A (2007) 362–363.
16] E. Pidcock, A Chiral Molecules is Non-centrosymmetric Space Groups, 2005,
doi:10.1039/b505236.
[17] R. Ramesh Babu, N. Vijayan, R. Gopalakrishnan, P. Ramasamy, J. Cryst. Growth
40 (2002) 545–548.
2
[
18] R.M. Silverstein, F.X. Webster (Eds.), Spectrometric Identification of Organic
Compounds, sixth ed., John Wiley and Sons, Inc., Canada, 1998, pp. 91–103.
[19] Y.R. Sharma, Elementary Organic spectroscopy, S. Chand, New Delhi, 2009, p.
05.
1
[
20] C.N.R. Rao, Ultraviolet and Visible Spectroscopy of Organic Compound, Prentice
Hall Pvt. Ltd., New Delhi, 1984, pp. 60–66.
[21] G.R. Chatwal, S.K. Anand, Atomic and Molecular Spectroscopy, fifth ed.,
Himalaya Publishing House, 2004, p. 2.154.
[22] P.A. Heinkhen, Afr. Phys. Rev. 2 (2008) 68.
DTA reveal that this compound is stable up to its melting point
◦
1
53 C. Second harmonic generation efficiency of the powdered
[
23] J.I. Pankove, Optical Processes in Semiconductors, Prentice hall, New York,
971, p. 412.
BTSC monohydrate crystal is ∼5.3 times that of potassium dihy-
1
drogen orthophosphate crystal.
[24] C. Vesta, R. Uthrakumar, C. Justin Raj, A. Jonie Varjula, J. Mary Linet, S. Jerome
Das, J. Mater. Sci. Technol. 23 (2007) 855–859.
[
25] R. Uthrakumar, C. Vesta, C. Justin Raj, S. Krishnan, S. Jerome Das, Curr. Appl.
Phys. 10 (2010) 548–552.
Acknowledgments
[
[
[
[
26] J. Gong, J. Mater. Sci. Lett. 19 (2005) 515–517.
27] Meyer, Some Aspects of the Hardness of Metals, PhD thesis, Draft, 1951.
28] H. Li, R.C. Bradt, J. Hard Mater. 3 (1993) 403–419.
29] F. Kick, D. Gasetzder, proportionalen widerstande Und Science anwendung,
Felix, Leipzig, 1885.
30] C. Hays, E.G. Kendall, Metallography 6 (1973) 275–282.
31] E.M. Onitsch, Microskope 95 (1950) 12–14.
The authors (RS and KR) thank to Dr. K. Panchanatheeswaran,
Professor in Chemistry (Rtd), Bharathidasan University, Tiruchi-
rappalli for fruitful discussion. Further one of the authors [RS]
thank University Grants Commission, Government of India for
financial assistance [File No. MRP 2976/2009 (RS)]. Authors thank
Prof. D. Sastikumar, Department of Physics, NIT, Tiruchirappalli, for
the support in recording the Z-scan measurements. The authors
acknowledge Prof. P.K. Das, Department of Inorganic and Physical
[
[
[
32] C.M. Earnet, Anal. Chem. 56 (1984) 1471A–1486A.
[33] Y.Le. Fur, R. Masse, M.Z. Cherkaoui, J.F. Nicoud, Z. Kristallogr. 210 (1995)
56–860.
34] S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798–3813.
8
[