10.1002/chem.201900334
Chemistry - A European Journal
COMMUNICATION
methylene and a singlet at 7.91 ppm for the N2CH group. Penta-
coordination at the silicon atom follows from a 29Si resonance at
−88.6 ppm.
Acknowledgments
We gratefully acknowledge financial support from Deutsche
Forschungsgemeinschaft (DFG, grant MI477/31-1 and core faci-
lity GED@BI grant MI477/35-1) and Solvay GmbH (Hannover,
Germany) for providing pentafluoroethane.
Conflict of interest
Final proof for the formation of a four-membered ring (similar
to the product of the reaction with NO: 3) stems from X-ray crys-
tallography (Figure 7). The ring angle Si1-N1-P is 99.0(1)° while
Si1-C7-P is 94.5(1)°. The Si1P distance at 2.736(1) Å is 0.11 Å
longer compared to compound 3.
The authors declare no conflict of interest.
Keywords: Frustrated Lewis Pairs • Germanium • Silicon •
Phosphorus • Fluoroalkyl groups
[1]
a) G. C. Welch, R. R. San Juan, J. D. Masuda, D. W. Stephan, Science
2006, 314, 1121–1124; b) D. W. Stephan, Acc. Chem. Res. 2015, 48,
306–316; c) P. Spies, G. Erker, G. Kehr, K. Bergander, R. Fröhlich, S.
Grimme, D. W. Stephan, Chem. Commun. 2007, 5072–5074; d) G. C.
Welch, D. W. Stephan, J. Am. Chem. Soc. 2007, 129, 1880–1881; e) D.
W. Stephan, Dalton Trans. 2009, 3129–3136; f) C. M. Mömming, E.
Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephan, G. Erker, Angew.
Chem. Int. Ed. 2009, 48, 6643–6646; g) D. W. Stephan, G. Erker, Angew.
Chem. Int. Ed. 2010, 49, 46–76; h) D. W. Stephan, G. Erker, Chem. Sci.
2014, 5, 2625–2641; i) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed.
2015, 54, 6400–6441; j) L. A. Körte, S. Blomeyer, S. Heidemeyer, A. Mix,
B. Neumann, N. W. Mitzel, Chem. Commun. 2016, 52, 9949–9952.
a) P. A. Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem.
2007, 119, 8196–8199; b) H. Wang, R. Fröhlich, G. Kehr, G. Erker, Chem.
Commun. 2008, 5966–5968; c) K. Chernichenko, M. Nieger, M. Leskelä,
T. Repo, Dalton Trans. 2012, 41, 9029–9032; d) D. J. Scott, M. J. Fuchter,
A. E. Ashley, Chem. Soc. Rev. 2017, 46, 5689–5700.
[2]
[3]
a) C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W.
Stephan, G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643–6646. b) B.
Chen, R. Neumann, Eur. J. Inorg. Chem. 2018, 6, 791–794. c) M. Pieper,
J.-H. Lamm, B. Neumann, H.-G. Stammler, N. W. Mitzel, Dalton Trans.
2017, 46, 5326–5336.
Figure 7. Molecular structure of compound 9 in the solid state. Ellipsoids are
set at 50% probability; only hydrogen atom at C16 is shown for clarity. Selected
bond lengths [Å] and angles [°]: P1–Si1 2.736(1), P1–N1 1.655(2), Si1–N1
1.933(2), P1–C7 1.785(2), Si1–C7 1.939(2), Si1–C1 2.012(3), Si1–C5 1.999(2),
Si1–C3 2.054(2), C16–N2 1.290(3), N1–N2 1.398(3), Si1-N1-P1 99.0(1), Si1-
C7-P1 94.5(1), C16-N2-N1 119.2(2), Si2-C16-N2 116.5(2).
[4]
[5]
[6]
[7]
a) R. L. Melen, Angew. Chem. Int. Ed. 2018, 57, 880–882; b) C. Tang,
Q. Liang, A. R. Jupp, T. C. Johnstone, R. C. Neu, D. Song, S. Grimme,
D. W. Stephan, Angew. Chem. Int. Ed. 2017, 56, 16588–16592.
C. Appelt, H. Westenberg, F. Bertini, A. W. Ehlers, J. C. Slootweg, K.
Lammertsma, W. Uhl, Angew. Chem. Int. Ed. 2011, 50, 3925–3928; b)
G. Menard, D. W. Stephan, Angew. Chem. Int. Ed. 2012, 51, 4409.
E. J. Lawrence, E. R. Clark, L. D. Curless, J. M. Courtney, R. J. Blagg,
M. J. Ingleson G. G. Wildgoose, Chem. Sci. 2016, 7, 2537–2543; b) E.
R. Clark, M. J. Ingleson, Angew. Chem. Int. Ed. 2014, 53, 11306–11309.
a) S. A. Weicker, D. W. Stephan, Chem. Eur. J. 2015, 21, 13027–13034;
b) A. Schäfer, M. Reißmann, A. Schäfer, W. Saak, D. Haase, T. Müller,
Angew. Chem. Int. Ed. 2011, 50, 12636–12638; c) T. J. Herrington, B. J.
Ward, L. R. Doyle, J. McDermott, A. J. P. White, P. A. Hunt, A. E. Ashley,
Chem. Commun. 2014, 50, 12753–12756; d) B. Waerder, M. Pieper, L.
A. Körte, T. A. Kinder, A. Mix, B. Neumann, H.-G. Stammler, N. W. Mitzel,
Angew. Chem. Int. Ed. 2015, 54, 13416–13419.
Herein we demonstrated the neutral Ge/P FLP-system
(C2F5)3GeCH2P(tBu)2 (2) to be capable of cleaving NO and HCl,
as well as to bind Ph-NCO, the same applies to the silicon
analogue (C2F5)3SiCH2P(tBu)2 (1). However, unlike the latter, 2
does not react with H2, CO2 or SO2 under comparable conditions.
There are a number of facts that demonstrate clearly that the
germanium function is the reason for the weaker Lewis acidity in
comparison to the silicon analogue: a) the different structures of
the NO oxidation products, b) the predicted double-minimum
potential for the SiCPO ring-type oxidation product 3 (E = Si) while
4 (E = Ge) has a single minimum and open-chain structure, c) the
fact that only 1 but not 2 is able to split Me3Si-CHN2. In addition,
we calculated free enthalpies for the addition of HCl (ΔGHCl) and
the fluoride ion affinities (FIA) for 1 and 2 (ΔGHCl [kJ mol–1] = –77
(1), –63 (2); FIA [kJ mol–1] = 378 (1), 308 (2)) which fully confirm
this trend (details see Supporting Information). This feature can
allow a fine tuning of Lewis acidity in future applications.
[8]
[9]
Y. Yu, J. Li, W. Liu, Q. Ye, H. Zhu, Dalton Trans. 2016, 45, 6259–6268.
a) S. Freitag, J. Henning, H. Schubert, L. Wesemann, Angew. Chem. Int.
Ed. 2013, 52, 5640–5643; b) S. Freitag, K. M. Krebs, J. Henning, J.
Hirdler, H. Schubert, L. Wesemann, Organometallics 2013, 32, 6785–
6791; c) D. J. Scott, N. A. Phillips, J. S. Sapsford, A. C. Deacy, M. J.
Fuchter, A. E. Ashley, Angew. Chem. 2016, 128, 14958–14962; d) R. C.
Turnell-Ritson, J. S. Sapsford, R. T. Cooper, S. S. Lee, T. Földes, P. A.
Hunt, I. Pápai, A. E. Ashley, Chem. Sci. 2018, 9, 8716–8722; e) D. A.
Dickie, E. N. Coker, R. A. Kemp, Inorg. Chem. 2011, 50, 11288–11290.
This article is protected by copyright. All rights reserved.