1
680
R. Kubec et al. / Phytochemistry 61 (2002) 675–680
MHz; CD OD): ꢂ 3.23 (2H, m, SCH ), 3.76 (2H, m,
3
Gagnon, H., Jean, F.-I., 1998. Volatile constituents of the root oil of
Petiveria alliacea L.from Benin.J.Essent.Oil Res.10, 645–646.
Ayodele, E.T., Hudson, H.R., Ojo, I.A.O., Pianka, M., 2000. Orga-
nosulfur compounds as potential fungicides: the preparation and
properties of some substituted benzyl 2-hydroxyethyl oligosulfides.
Phosphorus, Sulfur Silicon Relat.Elem 159, 123–142.
2
CH OH), 4.39 (1H, d, J=12.9 Hz, CH S(O)-a), 4.49
2
2
(
1H, d, J=12.9 Hz, CH S(O)-b), 7.327.45 (5H, m,
2
Harom); 13C NMR (75 MHz; CD OD): ꢂ 36.1 (SCH ),
3
2
62.7 (CH OH), 63.1 (CH S(O)), 129.7, 129.8, 131.6,
2 2
1
31.7 (Carom); MALDI–HRMS [MH]+ 217.0352
Benevides, P.J.C., Young, M.C.M., Giesbrecht, A.M., Roque, N.F.,
Bolzani, V.S., 2001. Antifungal polysulphides from Petiveria allia-
cea L.Phytochemistry 57, 743–747.
(
C H O S req.217 0. 351).
9 12 2 2
Block, E., 1992. The organosulfur chemistry of the genus Allium—
implications for the organic chemistry of sulfur.Angew.Chem ., Int.
Ed.Engl.31, 1135–1178.
3
.10. S-Benzyl (2-hydroxyethane)thiosulfinate (5)
ꢁ
White solid; mp 50–51 C; UV l (EtOH) nm (log
): 206 (4.25), 224 (3.99), 260 (3.37); IR (KBr) ꢁ
Chatgilialoglu, C., Gilbert, B.C., Gill, B., Sexton, M.D., 1980. Elec-
tron spin resonance studies of radicals formed during the thermo-
lysis and photolysis of sulphoxides and thiolsulphonates.J.Chem.
Soc.Perkin 2 1141–1150.
max
"
cm : 3387 (m, br), 1493 (w), 1453 (m), 1069 (vs), 1055
max
ꢀ1
1
(vs), 995 (m), 701 (s); H NMR (300 MHz; CD OD): ꢂ
3
Furukawa, M., Tsuiji, S., Kojima, Y., Hayashi, S., 1973. The reaction
of benzyl phenylmethanethiosulfinate with amines.Chem.Pharm.
Bull 21, 2391–2395.
3
CH OH), 4.39 (2H, s, CH S), 7.24–7.43 (5H, m, Harom);
.22–3.37 (2H, m, S(O)CH ), 3.93–3.97 (2H, m,
2
2
2
1
3
Hefner Jr., R.E., Watanabe, P.G., Gehring, P.J., 1975. Fate of inhaled
vinyl chloride monomer in rats.Environ.Health Perspect.11, 85–95.
Jones, A.R., Wells, G., 1981. The comparative metabolism of 2-bro-
moethanol and ethylene oxide in the rat.Xenobiotica 11, 763–770.
Kice, J.L., Parham, F.M., Simons, R.M., 1960. The thermal decom-
position of thiolsulfonates.J.Am.Chem.Soc.82, 834–842.
C NMR (75 MHz; CD OD): ꢂ 37.7 (CH S), 56.5
3
2
(
(
S(O)CH ), 59.6 (CH OH), 128.8, 129.8, 130.2, 138.3
2 2
Carom); MALDI-HRMS [MH]+ 217.0352 (C H O S
req.217 0. 351).
9 12 2 2
Kubec, R., Svobodova
determination of S-alk(en)ylcysteine sulfoxides.J.Chromatogr.A
62, 85–94.
, M., Velısek, J., 1999. Gas chromatographic
´ ˇ
´
3
.11. S-Benzyl phenylmethanethiosulfinate (6)
8
ꢁ
White solid; mp 77–78 C; UV l (EtOH) nm (log
): 208 (4.43), 226 (4.30), 266 (3.36); IR (KBr) ꢁ
max
Kubec, R., Musah, R.A., 2001. Cysteine sulfoxide derivatives in Peti-
veria alliacea.Phytochemistry 58, 981–985.
"
cm : 3445 (w, br), 2968–2900 (w), 1493 (w), 1451 (m),
max
ꢀ1
Mata-Greenwood, E., Ito, A., Westenburg, H., Cui, B., Mehta, R.G.,
Kinghorn, A.D., Pezzuto, J.M., 2001. Discovery of novel inducers
of cellular differentiation using HL-60 promyelocytic cells.Anti-
cancer Res.21, 1763–1770.
1
1
077 (s), 1055 (s), 761 (m), 695 (s); H NMR (300 MHz;
acetone): d 4.29 (2H, s, SCH ), 4.35 (1H, d, J=12.9 Hz,
2
CH S(O)-a), 4.43 (1H, d, J=12.9 Hz, CH S(O)-b),
7
2
2
Nachtomi, E., Alumot, E., Bondi, A., 1966. The metabolism of ethyl-
ene dibromide in the rat I.Identification of detoxification products
in urine.Israel J.Chem.4, 239–246.
.24–7.42 (5H, m, Harom); 13C NMR (75 MHz; acetone):
ꢂ 35.7 (SCH ), 62.6 (CH S(O)), 128.2, 129.0, 129.2,
2
2
Ratner, S., Clarke, H.T., 1937. The action of formaldehyde upon
cysteine.J.Am.Chem.Soc.59, 200–206.
1
[
29.4, 129.9, 131.2, 131.8 (Carom); MALDI-HRMS
MH]+ 263.0564 (C H OS req.263 0. 559).
1
4
14
2
Shiraiwa, T., Tadokoro, K., Tanaka, H., Nanba, K., Yokono, N.,
Shibazaki, K., Kubo, M., Kurokawa, H., 1998. Synthesis of opti-
cally active 1,4-thiazane-3-carboxylic acid via optical resolution by
Acknowledgements
preferential
crystallization
of
(RS)-2-amino-3-[(2-chlor-
oethyl)sulfanyl]propanoic acid hydrochloride.Biosci.Biotechnol.
Biochem.62, 2382–2387.
The authors would like to thank Dr.Eric Block for
helpful suggestions and critical reading of the manu-
script.We also thank Dr.Gary Siuzdak at the Scripps
Research Institute Center for Mass Spectrometry (La
Jolla, CA) for technical support.Support for this work
was provided by the Research Foundation of the State
University of New York at Albany.
Smythe, J.A., 1922. Decomposition of benzyl disulphoxide. J. Chem.
Soc.121, 1400–1405.
Sousa, J.R., Demuner, A.J., Pinheiro, J.A., Breitmaier, E., Cassels,
B.K., 1990. Dibenzyl trisulphide and trans-N-methyl-4-methoxy-
proline from Petiveria alliacea.Phytochemistry 29, 3653–3655.
¨
Stoll, A., Seebeck, E., 1949. Uber die Spezifitat der Alliinase und die
¨
Synthese mehrerer dem Alliin verwandter Verbindungen.Helv.
Chim.Acta 32, 866–876.
Szczepanski, C., Zgorzelak, P., Hoyer, G.-A., 1972. Isolierung, Struk-
¨
turaufklarung und Synthese einer antimikrobiell wirksamen Sub-
stanz aus Petiveria alliacea L.Arzneim -. Forsch.22, 1975–1976.
White, R.C., Dellinger, D., 1985. Photolysis of benzyl toluene-a-thio-
sulphonate.J.Chem.Res.S 64–65.
References
Adesogan, E.K., 1974. Trithiolaniacin, a novel trithiolan from Peti-
veria alliacea.J.Chem.Soc.Chem.Commun.21, 906–907.
Ayedoun, M.A., Moudachirou, M., Sossou, P.V., Garneau, F.-X.,
Ziegler, S.J., Sticher, O., 1989. HPLC of S-alk(en)yl-l-cysteine deri-
vatives in garlic including quantitative determination of (+)-S-allyl-
l-cysteine sulfoxide (alliin).Planta Med.55, 372–378.