Please do not adjust margins
Green Chemistry
Page 5 of 7
DOI: 10.1039/C8GC00295A
Journal Name
COMMUNICATION
17 C. J. Medforth, M. O. Senge, K. M. Smith, L. D. Sparks and J.
A. Shelnutt, J. Am. Chem. Soc., 1992, 114, 9859.
18 J. Takeda, T. Ohya and M. Sato, Inorg. Chem., 1992, 31, 2877.
19 (a) T. Nakanishi, K. Ohkubo, T. Kojima and S. Fukuzumi, J.
Am. Chem. Soc., 2009, 131, 577; (b) Y. Fang, P. Bhyrappa, Z.
Ou and K. M. Kadish, Chem.–Eur. J., 2014, 20, 524.
determine the reorganization energy to be 0.74 eV.
Furthermore, the assembly, (H416+)2-RuPOM, can function as
an effective photocatalyst for PORs of organic substrates such
as benzyl alcohol derivatives. The reaction yields and quantum
efficiency (Φ) of the POR system developed in this work are
comparable43 or moderate8b relative to examples reported to
date; however, the robustness of the photosensitizer H416+, in
comparison with conventional [Ru(bpy)3]2+, assures the
durability and recyclability of the photocatalyst as
demonstrated in this work. Furthermore, this work
demonstrates a new strategy to provide a supramolecular
photocatalyst effective in PORs in water, using multicationic
porphyrin derivatives and multianionic POMs based on their
strong electrostatic interaction.
20 RuPOM has been known to show catalytic activity for
substrate oxidation: (a) R. Neumann and C. Abu.-Gnim, J.
Am. Chem. Soc., 1990, 112, 6025; (b) A. Yokoyama, K.
Ohkubo, T. Ishizuka, T. Kojima and S. Fukuzumi, Dalton
Trans., 2012, 41, 10006.
21 P. V. D. Sluis and A. L. Spek, Acta Crystallogr. 1990, A46, 194.
22 (a) T. Kojima, T. Nakanishi, R. Harada, K. Ohkubo, S.
Yamauchi and S. Fukuzumi, Chem.–Eur. J., 2007, 13, 8714. (b)
D. S. Grubisha, G. A. Mirafzal and L. K. Woo, Inorg. Chim.
Acta, 2008, 361, 3079.
23 The cyclic and differential-pulse voltammograms (CV and
DPV) of H416+ were also measured in CH3CN containing (n-
Bu)4N·PF6 (0.1 M) as an electrolyte (Fig. S5 in the ESI).
24 The ideal slope values for 1H+/2e– and 2H+/2e– processes
should be –29 and –59 mV/pH, respectively, and the
deviations of the experimental values from the ideal ones
are probably derived from the low reversibility of the
electrochemical processes.
This work was supported by a Grant-in-Aid (24245011,
15H00861, 16H02268, 16K13964, 17H03010, 26620154 and
26288037) from the Japan Society of Promotion of Science
(JSPS, MEXT) of Japan and a grant from Yazaki Memorial
Foundation for Science and Technology.
25 T. Kojima, T. Honda, K. Ohkubo, M. Shiro, T. Kusukawa, T.
Fukuda, N. Kobayashi and S. Fukuzumi, Angew. Chem., Int.
Ed., 2008, 47, 6712.
Notes and references
26 The photodegradation of H416+ in an acidic aqueous solution
was also investigated to reveal that H416+ was more stable
than [RuII(bpy)3]2+ (Fig. S9 in the ESI).
1
(a) N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. USA,
2006, 103, 15729; (b) M. D. Kärkäs, O. Verho, E. V. Johnston
and B. Åkermark, Chem. Rev., 2014, 114, 11863.
2
(a) D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Chem. Soc.
Rev., 2009, 38, 1999; (b) S. Fukuzumi and K. Ohkubo, Chem.
Sci., 2013, 4, 561.
27 (a) D. Schaming, C. C. Coquelard, S. Sorgues, L. Ruhlmann
and I. Lampre, App. Catal. A, 2010, 373, 160; (b) S.-Q. Liu, J.-
Q. Xu, H.-R. Sun and D.-M. Li, Inorg. Chim. Acta, 2000, 306
87.
,
3
4
M.-O. Simon and C.-J. Li, Chem. Soc. Rev., 2012, 41, 1415.
(a) Y. Umena, K. Kawakami, J.-R. Shen and N. Kamiya, Nature,
2011, 473, 55; (b) K. N. Ferreira, T. M. Iverson, K. Maghlaoui,
J. Barber and S. Iwata, Science, 2004, 303, 1831.
28 E. N. Glass, J. Fielden, A. L. Kaledin, D. G. Musaev, T. Q. Lian
and C. L. Hill, Chem.–Eur. J. 2014, 20, 4297.
29 C. Tourné, G. Tourné, S. A. Malik and T. J. R. Weakley, J.
Inorg. Nucl. Chem. 1970, 32, 3875.
5
6
7
J. P. McEvoy and G. W. Brudvig, Chem. Rev., 2006, 106, 4455.
A. M. Thayer, Chem. Eng. News, 1992, 70, 27.
(a) Y. V. Geletii, Z. Huang, Y. Hou, D. J. Musaev, T. Lian and C.
L. Hill, J. Am. Chem. Soc., 2009, 131, 7522; (b) D. Hong, Y.
Yamada, T. Nagatomi, Y. Takai and S. Fukuzumi, J. Am. Chem.
Soc., 2012, 134, 19572.
30 D. K. Lyon, W. K. Miller, T. Novet, P. J. Domaille, E. Evitt, D. C.
Johnson and R. G. Finke, J. Am. Chem. Soc., 1991, 113, 7209.
31 M. Sadakane, D. Tsukuma, M. H. Dickman, B. Bassil, U. Kortz,
M. Higashijima and W. Ueda, Dalton Trans., 2006, 4271.
32 FT-IR spectra of the supramolecular assemblies of H416+ and
POMS were measured (Table S2 in the ESI), and the
characteristic stretching bands were shifted low-energy sides
upon formation of the assemblies. Also, the electrochemical
studies of the supramolecular assemblies of H416+ with three
types of POMs (K5H[CoW12O40], K7[P2W17O61Mn(H2O)], and
RuPOM) were performed by DPV and the results are
summarized in Table S3.
8
(a) R. Pokhrel, M. K. Goetz, S. E. Shaner, W. Wu and S. S.
Stahl, J. Am. Chem. Soc., 2015, 137, 8384; (b) S. Fukuzumi, T.
Kishi, H. Kotani, Y.-M. Lee and W. Nam, Nat. Chem., 2011, 3,
38; (c) S. Ohzu, T. Ishizuka, Y. Hirai, S. Fukuzumi and T.
Kojima, Chem.–Eur. J., 2013, 19, 1563.
A. Juris and V. Balzani, Coord. Chem. Rev., 1988, 84, 85.
9
10 (a) S. Fukuzumi, H. Miyao, K. Ohkubo and T. Suenobu, J.
Phys. Chem. A, 2005, 109, 3285; (b) H. Kotani, T. Suenobu, Y.-
M. Lee, W. Nam and S. Fukuzumi, J. Am. Chem. Soc., 2011,
133, 3249.
11 B. Durham, J. V. Caspar, J. K. Nagle and T. J. Meyer, J. Am.
Chem. Soc., 1982, 104, 4803.
12 P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz and N.
Sutin, J. Am. Chem. Soc., 1984, 106, 4772.
13 (a) C. D. Windle, M. W. George, R. N. Perutz, P. A. Summers,
33 (a) R. A. Marcus, Angew. Chem., Int. Ed. Engl., 1993, 32
,
1111; (b) R. A. Marcus and N. Sutin, Biochim. Biophys. Acta,
1985, 811, 265.
34 T. Honda, T. Nakanishi, K. Ohkubo, T. Kojima and S.
Fukuzumi, J. Am. Chem. Soc., 2010, 132, 10155.
35 To confirm the formation of the supramolecule under the
photocatalytic conditions, we have performed the UV-Vis
titration experiment by adding the solution of RuPOM into
the aqueous solution of H416+ (5.0
ꢀM) in the presence of
persulfate (2.2 mM) (Figure S14 in the ESI). As a result, the
X. Z. Sun and A. C. Whitwood, Chem. Sci., 2015, 6, 6847; (b)
K. Rybicka-Jasinska, W. Shan, K. Zawada, K. M. Kadish and D.
Gryko, J. Am. Chem. Soc., 2016, 138, 15451.
association constant between H416+ and RuPOM under the
×
1010 M–2. This
14 A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. P.
Khimyak, V. Wiper, J. R. Darwent and M. J. Rosseinsky,
Angew. Chem., Int. Ed. 2012, 51, 7440.
15 (a) Y. Amao and T. Watanabe, App. Catal. B, 2009, 86, 109;
(b) T. Nagasawa, S. I. Allakhverdiev, Y. Kimura and T. Nagata,
Photochem. Photobiol. Sci., 2009, 8, 174.
conditions was determined to be (4.7 ± 0.3)
indicates that the supramolecular assembly between H416+
and RuPOM can be formed even in the presence of Na2S2O8.
36 Details are described in the ESI.
37 Oxidation reactions of benzyl alcohol catalysed by other Ru
complexes afforded benzoic acid as well as benzaldehyde.
16 M. Natali, E. Depoti, D. Vilona, A. Sartorel, M. Bonchio and F.
Scandola, Eur. J. Inorg. Chem., 2015, 3467.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins