10.1002/anie.201906890
Angewandte Chemie International Edition
COMMUNICATION
[1]
[2]
[3]
a) J. Barber, P. D. Tran, J. R. Soc. Interface 2013, 10,
20120984; b) S. J. Davis, K. Caldeira, H. D. Matthews,
Science 2010, 329, 1330-1333.
a) X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 2016, 9,
2177-2196; b) X. Liu, S. Inagaki, J. Gong, Angew. Chem. Int.
Ed. 2016, 55, 14924-14950.
a) K. Maeda, ACS Catal. 2013, 3, 1486-1503; b) H. Li, W. Tu,
Y. Zhou, Z. Zou, Advanced Science 2016, 3, 1500389.
[4] a) S. Das, P. Heasman, T. Ben, S. Qiu, Chem. Rev. 2017, 117,
1515-1563; b) Y. Zhang, J. Duan, D. Ma, P. Li, S. Li, H. Li, J.
Zhou, X. Ma, X. Feng, B. Wang, Angew. Chem. Int. Ed. 2017,
56, 16313-16317.
[5]
N. C. Burtch, H. Jasuja, K. S. Walton, Chem. Rev. 2014, 114,
10575-10612.
Figure 4. a) Schematic of the mechanism of TTCOF-M CO2RR with H2O
oxidation. b) Theoretical simulation UV−vis DRS of TTCOF-Zn and inset
scheme PET route under light excitation.
[6]
[7]
N. Huang, P. Wang, D. Jiang, Nat. Rev.Mater. 2016, 1, 16068.
a) S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M.
Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C.
J. Chang, Science 2015, 349, 1208-1213; b) S. Yang, W. Hu,
X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I.
Hermans, X. Zhang, J. Zhang, J. Huang, J. Am. Chem. Soc.
2018, 140, 14614-14618.
A. Nagai, Z. Guo, X. Feng, S. Jin, X. Chen, X. Ding, D. Jiang,
Nat. Commun. 2011, 2.
S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K.
Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki,
J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094-
4097.
Density functional theory (DFT) calculation study were applied
to understand the photo-excitation process and catalytic reaction
mechanisms. The low-lying electronic transitions in the TTCOF
framework are shown in Fig 4b, and the insert demonstrates the
first excitation contribution, i.e. from HOMO to LUMO. As we
expected, the well-known electron donating TTF fragment
dominates HOMO while LUMO is mainly contributed by TAPP
part. Therein, the PET process can be readily occurred by light
irradiation, which further forms photogenerated electrons located
on the TAPP-M (formed TAPP-M-) and photogenerated holes
centered at the TTF unit (formed TTF+). For the hole-doped TTF+,
the spin density mostly locates on linker C=C and the S atoms
(Fig S59), indicating that the H2O oxidation process can be
conducted on both sites. For the electrons located TAPP-M-, the
CO2 reduction reaction will conduct on metal ion center. This
result confirmed the above mechanism we proposed.
[8]
[9]
[10] a) S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M.
Cendejas, I. Hermans, X. Zhang, J. Zhang, J. Huang, J. Am.
Chem. Soc. 2018; b) Y. Fu, X. Zhu, L. Huang, X. Zhang, F.
Zhang, W. Zhu, Applied Catalysis B: Environmental 2018, 239,
46-51.
[11] a) T. Kojima, T. Honda, K. Ohkubo, M. Shiro, T. Kusukawa, T.
Fukuda, N. Kobayashi, S. Fukuzumi, Angewandte Chemie-
International Edition 2008, 47, 6712-6716; b) K. Kilsa, J.
Kajanus, A. N. Macpherson, J. Martensson, B. Albinsson, J.
Am. Chem. Soc. 2001, 123, 3069-3080.
In summary, a series of 2D COFs were synthesized and used
as photocatalysts to reduce CO2 with H2O as electron donor,
without additional PS, SA and noble metal co-catalyst. Thanks to
the effective covalent coupling between porphyrin and
tetrathiafulvalene molecules within TTCOFs, the electron-hole
pairs induced by visible-light irradiation can be separated and
transferred efficiently for CO2 reduction and H2O oxidation
reactions. TTCOF-Zn shows the highest photocatalytic CO
production of 12.33 μmol with ~100 % selectivity and superior
durability under our experimental conditions. This is the first
report of rational designed crystalline COF system applied for
selective photoreduction of CO2 with H2O as electron donor.
Moreover, we offering more straightforward and clearer
crystalline evidence over the structure-function relationship of
heterogeneous photocatalysts. Our research provides a new
insight in designing next generation crystalline photocatalysts for
artificial photosynthesis of CO2 with H2O.
[12] a) C. M. Davis, Y. Kawashima, K. Ohkubo, J. M. Lim, D. Kim,
S. Fukuzumi, J. L. Sessler, J. Phys. Chem. C. 2014, 118,
13503-13513; b) A. Jana, S. Bahring, M. Ishida, S. Goeb, D.
Canevet, M. Salle, J. O. Jeppesen, J. L. Sessler, Chem. Soc.
Rev. 2018, 47, 5614-5645; c) C. K. Graetzel, M. Graetzel, The
Journal of Physical Chemistry 1982, 86, 2710-2714.
[13] P. Shao, J. Li, F. Chen, L. Ma, Q. Li, M. Zhang, J. Zhou, A. Yin,
X. Feng, B. Wang, Angew. Chem. 2018, 130, 16739-16743.
[14] S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su,
W. Wang, J. Am. Chem. Soc. 2011, 133, 19816-19822.
[15] H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J.
Kong, X. Wang, X. Meng, Angew. Chem. Int. Ed. 2016, 55,
14310-14314.
[16] a) H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu,
H.-L. Jiang, J. Am. Chem. Soc. 2015, 137, 13440-13443; b) S.
Li, Y. Dong, J. Zhou, Y. Liu, J. Wang, X. Gao, Y. Han, P. Qi, B.
Wang, Energy & Environmental Science. 2018, 11, 1318-1325.
[17] X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W.-H. Zhu,
R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, A. I.
Cooper, Nat. Chem. 2018, 10, 1180-1189.
[18] G. Zhang, Z. A. Lan, L. Lin, S. Lin, X. Wang, Chem. Sci. 2016,
7, 3062-3066.
Acknowledgments
This work was financially supported by NSFC [No. 21622104,
21471080, 2170010097 and 21701085, BK20171032]; the NSF
of Jiangsu Province of China [No. SBK2017040708]; the Natural
Science Research of Jiangsu Higher Education Institutions of
China [No. 17KJB150025]; Priority Academic Program
Development of Jiangsu Higher Education Institutions and the
Foundation of Jiangsu Collaborative Innovation Center of
Biomedical Functional Materials.
Keywords: covalent organic frameworks • CO2 photoreduction •
H2O photooxidation • electron transfer
This article is protected by copyright. All rights reserved.