Dalton Transactions
Paper
(tfmppm)2(pop), which can not only enhance the PL quantum
efficiency, but also increase the electron mobility of the Ir(III)
complexes, resulting in excellent EL performances. The better
electron mobility and the lower LUMO level of
Ir(tfmppm)2(pop) would facilitate the injection and transport
of electrons, which would broaden the recombination zone
and balance the distribution of holes and electrons, particu-
larly at a high doping concentration, leading to the suppressed
triplet–triplet annihilation (TTA) and triplet-polaron annihil-
ation (TPA) effects, resulting in excellent EL performances,
consistent with the design intention.
Chem. Mater., 2013, 25, 2352; (c) B. H. Zhan, G. P. Tan,
C. S. Lam, B. Yao, C. L. Ho, L. H. Liu, Z. Y. Xie, W. Y. Wong,
J. Q. Ding and L. Wang, Adv. Mater., 2012, 24, 1873;
(d) S. Reineke, F. Lindner, G. Schwartz, N. Seidler,
K. Walzer, B. Luessem and K. Leo, Nature, 2009, 459, 234;
(e) G. Schwartz, S. Reineke and T. C. Rosenow, Adv. Funct.
Mater., 2009, 19, 1319; (f) M. A. Baldo, D. F. O’Brien,
Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and
S. R. Forrest, Nature, 1998, 395, 151; (g) Y. Ma, H. Zhang,
J. Shen and C. Che, Synth. Met., 1998, 94, 245;
(h) C. Adachi, M. A. Baldo, M. E. Thompson and
S. R. Forrest, J. Appl. Phys., 2001, 90, 5048.
3 (a) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq,
H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest and
M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4304;
(b) J. Li, P. I. Djurovich, B. D. Alleyne, M. Yousufuddin,
N. N. Ho, J. C. Thomas, J. C. Peters, R. Bau and
M. E. Thompson, Inorg. Chem., 2005, 44, 1713; (c) D. B. Xia,
B. Wang, B. Chen, S. M. Wang, B. H. Zhang, J. Q. Ding,
L. X. Wang, X. B. Jing and F. S. Wang, Angew. Chem., Int.
Ed., 2014, 53, 1048; (d) X. B. Xu, G. J. Zhou and W. Y. Wong,
Chem. Commun., 2014, 50, 2473; (e) R. J. Wang, D. Liu and
J. Y. Li, Adv. Mater., 2011, 23, 2823; (f) S. Haneder,
E. D. Como and J. Feldmann, Adv. Mater., 2008, 20, 3325;
(g) J. Q. Ding, B. Wang and L. X. Wang, Angew. Chem., Int.
Ed., 2009, 48, 6664; (h) W. Y. Wong, C. L. Ho and Z. Y. Lin,
Angew. Chem., Int. Ed., 2006, 45, 7800; (i) W. W. Tian,
W. Jiang and Y. M. Sun, J. Mater. Chem. C, 2014, 2, 1104;
( j) J. J. Kim, Y. You, Y. S. Park, J. J. Kim and S. Y. Park,
J. Mater. Chem., 2009, 19, 8347; (k) Z. Q. Chen, Z. Q. Bian
and C. H. Huang, Adv. Mater., 2010, 22, 1534;
(l) S. M. Chen, G. P. Tan, W. Y. Wong and H. S. Kwok, Adv.
Funct. Mater., 2011, 21, 3785; (m) J. M. Fernández-
Hernández, C. H. Yang, J. I. Beltrán, V. Lemaur, F. Polo,
R. Fröhlich, J. Cornil and L. D. Cola, J. Am. Chem. Soc.,
2011, 133, 10543; (n) K. Y. Lu, H. H. Chou, C. H. Hsieh,
Y. H. O. Yang, H. R. Tsai, H. Y. Tsai, L. C. Hsu, C. Y. Chen,
I. C. Chen and C. H. Cheng, Adv. Mater., 2011, 23, 4933;
(o) S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang,
S. K. Kwon, J. J. Kim and Y. H. Kim, J. Am. Chem. Soc.,
2013, 135, 14321; (p) X. L. Yang, N. Sun, J. S. Dang,
Z. Huang, C. L. Yao, X. B. Xu, C. L. Ho, G. J. Zhou,
D. G. Ma, X. Zhao and W. Y. Wong, J. Mater. Chem. C, 2013,
1, 3317; (q) H. Sasabe, H. Nakanishi, Y. Watanabe, S. Yano,
M. Hirasawa, Y. J. Pu and J. Kido, Adv. Funct. Mater., 2013,
23, 5550; (r) H.-H. Chou, Y.-K. Li, Y.-H. Chen, C.-C. Chang,
C.-Y. Liao and C.-H. Cheng, ACS Appl. Mater. Interfaces,
2013, 5, 6168; (s) V. K. Rai, M. Nishiura, M. Takimoto and
Z. Hou, J. Mater. Chem. C, 2014, 2, 5317; (t) H. Cao, H. Sun,
Y. Yin, X. Wen, G. Shan, Z. Su, R. n. Zhong, W. Xie, P. Li
and D. Zhu, J. Mater. Chem. C, 2014, 2, 2150; (u) A. Graf,
P. Liehm, C. Murawski, S. Hofmann, K. Leo and
M. C. Gather, J. Mater. Chem. C, 2014, 2, 10298; (v) X. Yang,
G. Zhou and W.-Y. Wong, J. Mater. Chem. C, 2014, 2, 1760;
(w) P.-N. Lai, C. H. Brysacz, M. K. Alam, N. A. Ayoub,
T. G. Gray, J. Bao and T. S. Teets, J. Am. Chem. Soc., 2018,
Conclusions
In conclusion, two bis-cyclometalated Ir(III) complexes Ir
(tfmphpm)2(pop) and Ir(tfmppm)2(pop) with 2-(3,5-bis(tri-
fluoromethyl)phenyl)pyrimidine (tfmphpm) and 2-(2,6-bis(tri-
fluoromethyl)pyridin-4-yl)pyrimidine (tfmppm) as cyclometa-
lating ligands and 2-(5-phenyl-1,3,4-oxadiazol-2-yl)phenol
(pop) as the ancillary ligand were reported. Both complexes
emit green phosphorescence with high quantum efficiencies
up to 94%. By introducing one more nitrogen heterocycle to
the cyclometalating ligand, Ir(tfmppm)2(pop) attains better
electron mobility and a lower LUMO level, which would facili-
tate the injection and transport of electrons to broaden the
recombination zone and balance the distribution of holes and
electrons. As a result, device G2 based on Ir(tfmppm)2(pop) as
the emitter shows better EL performances with the maximum
luminance, current efficiency, power efficiency and external
quantum efficiency up to 48 981 cd m−2, 92.79 cd A−1, 39.46
lm W−1 and 31.8%, respectively. Moreover, the ηc and EQE of
the device G2 can still be retained as high as 89.20 cd A−1 and
30.5%, respectively, at the practical luminance of 1000 cd m−2
.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (51773088), the Natural Science
Foundation of Jiangsu Province (BY2016075-02) and the
Fundamental Research Funds for the Central Universities
(020514380131).
Notes and references
1 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51,
913.
2 (a) Y. Sun, N. C. Giebink, H. Kanno, B. Ma,
M. E. Thompson and S. R. Forrest, Nature, 2006, 440, 908;
(b) V. N. Kozhevnikov, Y. H. Zheng and A. P. Monkman,
This journal is © The Royal Society of Chemistry 2018
Dalton Trans., 2018, 47, 16543–16550 | 16549