Communication
ChemComm
for help with rheometers and confocal microscope and Annette
Taylor (Sheffield) for helpful discussions.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
2
P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133.
D. B. Amabilino, D. K. Smith and J. W. Steed, Chem. Soc. Rev., 2017,
46, 2404.
3
4
5
6
C. D. Jones and J. W. Steed, Chem. Soc. Rev., 2016, 45, 6546.
S. Panja, S. Ghosh and K. Ghosh, New J. Chem., 2018, 42, 6488.
X. Du, J. Zhou, J. Shi and B. Xu, Chem. Rev., 2015, 115, 13165.
J. Mayr, C. Sald ´ı as and D. D. D ´ı az, Chem. Soc. Rev., 2018, 47, 1484.
Fig. 4 Confocal microscopy images of the hydrogels of Fmoc-2 (conc. =
ꢀ1
7 E. R. Draper and D. J. Adams, Chem, 2017, 3, 390.
8
2
mg mL ) from (a) NaOH and (b–f) urea–urease reaction with initial
M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet and B. Escuder, Chem.
Soc. Rev., 2013, 42, 7086.
E. R. Draper, K. L. Morris, M. A. Little, J. Raeburn, C. Colquhoun,
E. R. Cross, T. O. McDonald, L. C. Serpell and D. J. Adams, Crys-
tEngComm, 2015, 17, 8047.
ꢀ1
conditions of (b) no acid; (c) pH 3.9 (HCl), [urease] = 0.1 mg mL ; (d) pH
ꢀ1
3.9 (AcOH), [urease] = 0.1 mg mL ; (e) pH 3.9 (HCl), [urease] = 0.03 mg
9
ꢀ1
ꢀ1
mL ; (f) pH 3.9 (AcOH), [urease] = 0.03 mg mL . Scale bar: 20 mm.
1
1
0 X. Zhang, Y. Wang, Y. Hua, J. Duan, M. Chen, L. Wang and Z. Yang,
Chem. Commun., 2018, 54, 755.
1 J. Boekhoven, J. M. Poolman, C. Maity, F. Li, L. van der Mee,
C. B. Minkenberg, E. Mendes, J. H. van Esch and R. Eelkema, Nat.
Chem., 2013, 5, 433.
3
2,33
ascribed to overlapping of the fluorenyl groups.
Interestingly,
the relative intensity of the excimer peaks increases as the rate of
gelation decreases (Fig. S10, ESI†), suggesting that the structures
3
1
12 J. S. Foster, J. M. Z˙ urek, N. M. S. Almeida, W. E. Hendriksen,
are packed more effectively when gelation is slow. Red-shifted
absorption and emission spectra were also observed for the NaOH
induced gel of Fmoc-3 (Fig. S11, ESI†). Excimer emission was
recorded in the same region but with a higher intensity compared to
Fmoc-2. This is may be due to the more flexible hydrophobic chain
in Fmoc-3 which controls the orientation of the fluorenyl group and
V. A. A. le Sage, V. Lakshminarayanan, A. L. Thompson, R. Banerjee,
R. Eelkema, H. Mulvana, M. J. Paterson, J. H. van Esch and G. O. Lloyd,
J. Am. Chem. Soc., 2015, 137, 14236.
1
1
3 J. Raeburn, T. O. McDonald and D. J. Adams, Chem. Commun., 2012,
8, 9355.
4
4 Y. Gao, Z. Yang, Y. Kuang, M.-L. Ma, J. Li, F. Zhao and B. Xu, Pept.
Sci., 2010, 94, 19.
24
15 D. J. Adams, M. F. Butler, W. J. Frith, M. Kirkland, L. Mullen and
allows effective aromatic overlap between the molecules.
Finally, as noted, the chemical stability of the gelators is a
P. Sanderson, Soft Matter, 2009, 5, 1856.
1
6 M. de Loos, B. L. Feringa and J. H. van Esch, Eur. J. Org. Chem., 2005, 3615.
potential concern since the Fmoc might be deprotected at 17 W. Helen, P. de Leonardis, R. V. Ulijn, J. Gough and N. Tirelli, Soft
Matter, 2011, 7, 1732.
8 E. R. Draper, L. L. E. Mears, A. M. Castilla, S. M. King, T. O.
McDonald, R. Akhtar and D. J. Adams, RSC Adv., 2015, 5, 95369.
elevated pH. To probe this, we prepared gels, allowed these to
1
stand for 2–3 hours, and then reacidified the samples. The
1
water was removed by freeze-drying and the H NMR spectra 19 K. Thornton, A. M. Smith, C. L. R. Merry and R. V. Ulijn, Biochem.
Soc. Trans., 2009, 37, 660.
recorded in d -DMSO (Fig. S12 and S13, ESI†). These showed
6
2
0 A. Mata, L. Hsu, R. Capito, C. Aparicio, K. Henrikson and S. I. Stupp,
Soft Matter, 2009, 5, 1228.
that Fmoc-2 and Fmoc-3 were stable under gelation conditions,
with no evidence of deprotection as would be evidenced by a 21 G. Hayase, S. Nagayama, K. Nonomura, K. Kanamori, A. Maeno,
H. Kaji and K. Nakanishi, J. Australas. Ceram. Soc., 2017, 5, 104.
2 E. Jee, T. B ´a ns ´a gi, A. F. Taylor and J. A. Pojman, Angew. Chem., Int.
Ed., 2016, 55, 2127.
peak at 6.27 ppm corresponding to the olefinic protons of
dibenzofulvene. The FT-IR data for the gels directly freeze-
2
29
dried at high pH back up this stability, showing the presence of 23 S. Debnath, A. Shome, D. Das and P. K. Das, J. Phys. Chem. B, 2010,
1
14, 4407.
the intact carbamate (Fig. S14, ESI†). However, the NMR spectra
2
4 S. Fleming, S. Debnath, P. W. J. M. Frederix, T. Tuttle and R. V. Ulijn,
Chem. Commun., 2013, 49, 10587.
25 R. Orbach, I. Mironi-Harpaz, L. Adler-Abramovich, E. Mossou,
recorded at high pH resulted in artefactual data as DMSO facili-
29
tates deprotection of the carbamate (Fig. S12 and S13, ESI†).
E. P. Mitchell, V. T. Forsyth, E. Gazit and D. Seliktar, Langmuir,
In conclusion, we have successfully used the autocatalytic
reaction between urease and urea to drive the self-assembly of
Fmoc-based cationic amphiphiles at high pH. Kinetic control
over gelation is achieved by modulation of the reaction condi-
tions allowing us to prepare homogeneous gels with superior
mechanical properties. The chemical stability of the Fmoc
gelator at basic pH in the assembled state is not affected. This
method complements the methods for slow pH decrease, and
we envisage that this will be of great use for the field.
2012, 28, 2015.
2
2
2
2
3
6 A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins,
M. L. Turner, A. Saiani and R. V. Ulijn, Adv. Mater., 2008, 20, 37.
7 A. Rajbhandary, D. M. Raymond and B. L. Nilsson, Langmuir, 2017,
33, 5803.
8 S. M. M. Reddy, G. Shanmugam, N. Duraipandy, M. S. Kiran and
A. B. Mandal, Soft Matter, 2015, 11, 8126.
9 S. H o¨ ck, R. Marti, R. Riedl and M. Simeunovic, Chimia, 2010,
64, 200.
0 R. Vijay and P. L. Polavarapu, J. Phys. Chem. A, 2012, 116, 10759.
31 A. R. Hirst, S. Roy, M. Arora, A. K. Das, N. Hodson, P. Murray,
S. Marshall, N. Javid, J. Sefcik, J. Boekhoven, J. H. van Esch,
S. Santabarbara, N. T. Hunt and R. V. Ulijn, Nat. Chem., 2010, 2, 1089.
SP thanks the Royal Society and SERB of India for a Newton
International Fellowship. DJA thanks the EPSRC for a Fellowship
3
2 Y. Zhang, H. Gu, Z. Yang and B. Xu, J. Am. Chem. Soc., 2003, 125, 13680.
(
EP/L021978/1). We thank E. R. Draper and A. M. Fuentes-Caparr o´ s 33 Z. Yang, H. Gu, Y. Zhang, L. Wang and B. Xu, Chem. Commun., 2004, 208.
5
0 | Chem. Commun., 2019, 55, 47--50
This journal is ©The Royal Society of Chemistry 2019