2287
A. Ivanov et al.
Letter
Synlett
References and Notes
(1) Kumar Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.;
Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620.
(2) Leboho, T. C.; Michael, J. P.; van Otterloa, W. A. L.; van Vuurenb,
S. F.; de Koning, C. B. Bioorg. Med. Chem. Lett. 2009, 19, 4948.
(3) Yang, J.; Liu, S.; Zheng, J.-F.; Zhou, J. Eur. J. Org. Chem. 2012,
6248.
(4) (a) Join, B.; Jamamoto, T.; Itami, K. Angew. Chem. Int. Ed. 2009,
48, 3644. (b) Phipps, R. J.; Grimster, N. P.; Guant, M. J. J. Am.
Chem. Soc. 2008, 130, 8172. (c) Dwight, T. A.; Rue, N. R.; Charyk,
D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.
(5) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127,
8050.
(6) Yu, J.-Q.; Shi, Z. Top. Curr. Chem. 2010, 292.
(7) Walser, A.; Blount, J. F.; Fryer, R. I. J. Org. Chem. 1973, 33, 3077.
(8) Yanagisawa, S.; Itami, K. Tetrahedron 2011, 67, 4425.
(9) Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K. Angew. Chem.
Int. Ed. 2010, 49, 8946.
(10) Tang, D.-T. D.; Collins, K. D.; Glorius, F. J. Am. Chem. Soc. 2013,
135, 7450.
Figure 2 Ortep plot of 2a (50% probability level)
(11) Pelkey, E. T.; Gribble, G. W. Tetrahedron Lett. 1997, 38, 5603.
(12) Seelfeld, M. A.; Miller, W. H.; Newlander, K. A.; Burgess, W. J.;
DeWolf, W. E. Jr; Elkins, P. A.; Head, M. S.; Jakas, D. R.; Janson, C.
A.; Keller, P. M.; Manley, P. J.; Moore, T. D.; Payne, D. J.; Pearson,
S.; Polizzi, B. J.; Qiu, X.; Rittenhouse, S. F.; Uzinskas, I. N.; Wallis,
N. G.; Huffman, W. F. J. Med. Chem. 2003, 46, 1627.
(13) General Procedure for the Synthesis of 2a–m
In a Schlenk flask 1 (100 mg, 0.57 mmol), appropriate aryl
bromide (2.28 mmol, 4 equiv), Pd(OAc)2 (0.057 mmol, 10 mol%),
K2CO3 (0.8 mmol, 1.4 equiv), and DMF (5 mL) were added under
argon atmosphere and stirred at 150 °C overnight. The reaction
mixture was then evaporated to dryness, and the product was
isolated by column chromatography (silica gel, hexane–EtOAc)
or via semipreparative HPLC (MeOH–H2O).
(14) 1-Methyl-2-nitro-3-phenylindole (2a)
Starting with 1 (100 mg, 0.57 mmol), bromobenzene (358 mg,
0.24 ml, 2.28 mmol), Pd(OAc)2 (12.8 mg, 0.057 mmol, 10 mol%),
K2CO3 (111 mg, 0.8 mmol), and DMF (5 mL), 2a was isolated as a
yellow solid (72 mg, 52%), mp 118–119 °C. 1H NMR (300 MHz,
Figure 3 Ortep plot of 2b (50% probability level)
3
DMSO-d6): δ = 4.09 (s, 3 H, CH3), 7.28 (t, JH–H = 7.52 Hz, 1 H,
ArH), 7.49–7.61 (m, 7 H, ArH), 7.78 (d, 3JH–H = 8.5 Hz, 1 H, ArH).
13C NMR (75 MHz, DMSO-d6): δ = 32.6 (CH3), 111.8 (CH), 118.6
(C), 121.8 (C), 122.4 (CH), 124.0 (C), 127.8 (CH), 127.9 (CH),
128.42 (CH), 129.9 (CH), 131.3 (C), 136.1 (C), 138.1 (C). IR (KBr):
1612 (w), 1548 (w), 1501 (m), 1458 (s), 1365 (s), 1303 (s), 1246
(s), 1208 (m), 1178 (m), 1157 (m), 1130 (m), 1113 (m), 1091
(m), 1069 (m), 1028 (m), 978 (w), 923 (m), 897 (m), 858 (w),
779 (m), 769 (m), 753 (s), 740 (s), 699 (s), 642 (m), 604 (s), 550
(m) cm–1. MS (EI, 70 eV): m/z (%) = 253 (18), 252 (M+, 100), 235
(15), 223 (10), 222 (20), 221 (10), 207 (25), 206 (12), 205 (21),
204 (20), 195 (12), 194 (15), 192 (10), 191 (24), 190 (36), 181
(21), 178 (12), 166 (10), 165 (49), 164 (19), 163 (20), 152 (15),
151 (10). HRMS (EI, 70 eV): m/z calcd for C15H12O2N2 [M+]:
252.08933; found: 252.08938.
In summary, we have developed a convenient approach
to 3-aryl-2-nitroindoles by palladium-catalyzed CH-activa-
tion reactions of 3-nitroindole 1 with a range of aryl bro-
mides. These reactions provide a convenient approach to
indole derivatives that are not readily available by other
methods.
Acknowledgement
Financial support by the DAAD (scholarship for A.I.) is gratefully ac-
knowledged.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2285–2287