Page 9 of 11
Journal of the American Chemical Society
4593-4609; (d) Carlmark, A.; Malmström, E.; Malkoch, M.,
heterolayered configuration. In its simplest form, using
Dendritic architectures based on bis-MPA: functional polymeric
scaffolds for application-driven research. Chem. Soc. Rev. 2013, 42
(13), 5858-5879; (e) García-Gallego, S.; Nyström, A. M.; Malkoch,
M., Chemistry of multifunctional polymers based on bis-MPA and
their cutting-edge applications. Prog. Polym. Sci. 2015, 48, 85-110.
1
2
3
4
5
6
7
8
bis-MPA as a model monomer, this growth concept makes
the typical usage of activation steps obsolete, introduces
heterogeneous covalent linkages across the dendritic
skeleton, allows the synthesis of different frameworks by
altering the sequence order of reactions, reduces the
reaction time from days into minutes, can potentially be
accomplished in sequence or one-pot and all while
preserving the structural perfection that is typical defining
dendrimers as the most precise polymers available. The
proposed strategy leaps the synthesis of complex
dendrimers to a new domain and in parallel minimizes
their synthetic challenges. It can be considered a guiding
strategy that can easily be transferred to generate a myriad
of monomers and thereof functional macromolecules and
materials that go beyond monodisperse dendrimers.
3. Antoni, P.; Robb, M. J.; Campos, L.; Montañez, M.; Hult, A.;
Malmström, E.; Malkoch, M.; Hawker, C. J., Pushing the limits for
Thiol−Ene and CuAAC reactions: Synthesis of a 6th generation
dendrimer in a single day. Macromolecules (Washington, DC, U.
S.) 2010, 43 (16), 6625-6631.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
4. (a) Kreye, O.; Kugele, D.; Faust, L.; Meier, M. A., Divergent
dendrimer synthesis via the Passerini three-component reaction
and olefin cross-metathesis. Macromol. Rapid Commun. 2014, 35
(3), 317-322; (b) Deng, X.-X.; Du, F.-S.; Li, Z.-C., Combination of
orthogonal ABB and ABC multicomponent reactions toward
efficient divergent synthesis of dendrimers with structural
diversity. ACS Macro Lett. 2014, 3 (7), 667-670.
ASSOCIATED CONTENT
Supporting Information.
Experimental details, structure and synthetic procedures of
monomers and dendrimers. Analytical data including 1H, 13C-
NMR, 2D-NMR, SEC traces, MALDI-TOF-MS, DSC analysis.
This material is available free of charge via the Internet at
5. Yamakawa, Y.; Ueda, M.; Takeuchi, K.; Asai, M., One-pot
synthesis of dendritic polyamide. J. Polym. Sci., Part A: Polym.
Chem. 1999, 37 (18), 3638-3645.
6. Rannard, S. P.; Davis, N. J., A Highly selective, one-pot multiple-
addition convergent synthesis of polycarbonate dendrimers. J.
Am. Chem. Soc. 2000, 122 (47), 11729-11730.
7. Brauge, L.; Magro, G.; Caminade, A.-M.; Majoral, J.-P., First
divergent strategy using two AB2 unprotected monomers for the
rapid synthesis of dendrimers. J. Am. Chem. Soc. 2001, 123 (27),
6698-6699.
AUTHOR INFORMATION
Corresponding Author
* Prof. Michael Malkoch
Royal Institute of Technology, School of Chemical Science
and Engineering, Fibre and Polymer Technology,
Teknikringen 56-58, SE-100 44 Stockholm, Sweden
E-mail: malkoch@kth.se.
8. Ornelas, C.; Aranzaes, J. R.; Cloutet, E.; Astruc, D., A one-pot
synthesis of a 243-allyl dendrimer under ambient conditions. Org.
Lett. 2006, 8 (13), 2751-2753.
9. Xiong, X. Q., One-pot synthesis of dendrimer via double click
reactions. Chin. J. Org. Chem. 2010, 2, 307-310.
Present Addresses
‡Department of Organic and Inorganic Chemistry. Faculty of
Sciences. University of Alcalá (Madrid, Spain)
10. Jia, Z.; Bell, C. A.; Monteiro, M. J., Directing the pathway of
orthogonal 'click' reactions by modulating copper-catalytic
activity. Chem. Commun. (Cambridge, U. K.) 2011, 47 (14), 4165-
4167.
ACKNOWLEDGMENT
This work was generously supported by the Swedish Research
Council VR (2011-5358, 2010-435 and 2015-04779) and Knut and
Alice Wallenberg Foundation KAW (2012-0196). This project
has received funding for Sandra García-Gallego from the
European Union's Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant
Agreement No. 655649. The authors also acknowledge the
experimental support from Kim Öberg and Marco Massa.
11. (a) Sharma, R.; Naresh, K.; Chabre, Y. M.; Rej, R.; Saadeh, N. K.;
Roy, R., "Onion peel" dendrimers: a straightforward synthetic
approach towards highly diversified architectures. Polym. Chem.
2014, 5 (14), 4321-4331; (b) Sharma, R.; Kottari, N.; Chabre, Y. M.;
Abbassi, L.; Shiao, T. C.; Roy, R.,
A highly versatile
convergent/divergent "onion peel" synthetic strategy toward
potent multivalent glycodendrimers. Chem. Commun.
(Cambridge, U. K.) 2014, 50 (87), 13300-13303; (c) Sharma, R.;
Zhang, I.; Abbassi, L.; Rej, R.; Maysinger, D.; Roy, R., A fast track
strategy toward highly functionalized dendrimers with different
structural layers: an "onion peel approach". Polym. Chem. 2015, 6
(9), 1436-1444.
REFERENCES
1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry:
Diverse chemical function from a few good reactions. Angew.
Chem., Int. Ed. 2001, 40 (11), 2004-2021.
12. Lutz, J.-F., An introduction to sequence-controlled polymers.
In sequence-controlled polymers: Synthesis, self-assembly, and
properties, American Chemical Society: 2014; Vol. 1170, pp 1-11.
2. (a) Arseneault, M.; Wafer, C.; Morin, J. F., Recent advances in
click chemistry applied to dendrimer synthesis. Molecules 2015,
20 (5), 9263-9294; (b) Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg,
R.; Kaltgrad, E.; Finn, M. G.; Fokin, V. V.; Sharpless, K. B.; Hawker,
C. J., Multivalent, bifunctional dendrimers prepared by click
chemistry. Chem. Commun. (Cambridge, U. K.) 2005, (46), 5775-
5777; (c) Walter, M. V.; Malkoch, M., Simplifying the synthesis of
dendrimers: accelerated approaches. Chem. Soc. Rev. 2012, 41 (13),
13. (a) Lutz, J. F., Defining the field of sequence-controlled
polymers. Macromol. Rapid Commun. 2017, 38 (24), 1700582; (b)
Martens, S.; Holloway, J. O.; Du Prez, F. E., Click and Click-
ACS Paragon Plus Environment