F.X. Llabrés i Xamena et al. / Journal of Catalysis 255 (2008) 220–227
227
tion medium), the 90 Co/10 Cu mixture yielded a T–H conver-
sion of 23 mol%, as compared to values of 20% and 21 mol%
obtained with copper and cobalt acetates, respectively. The se-
lectivity expressed as T=O/T–OH ratio was found to be also
better for the solid mixture (4.5 versus 2.4 and 3.0), as well
as the selectivity expressed as total product formation (con-
version to non-peroxidic products, (T=O + T–OH)/T–OOH ra-
tio): 22 for 90 Co/10 Cu and 5.7 for Cu(AcO)2 and 3.2 for
Co(AcO)2.
The last point to be assessed is whether the good perfor-
mance obtained for the 90 Co/10 Cu catalyst is preserved after
successive reuses. The results obtained after three reuses in-
dicate that the induction period remains negligible, although
a small loss of the overall conversion occurred (from 31 to
25 mol%), together with a considerable increase in the T=O/T–
OH ratio (from 3.8 to 6.0), when compared with the fresh
90 Co/10 Cu catalyst. The concentration of T–OOH was always
low, as in the fresh mixture.
[2] B. Moden, B.Z. Zhan, J. Dakka, J.G. Santiesteban, E. Iglesia, J. Phys.
Chem. C 111 (2007) 1402.
[3] A. Corma, J.M.L. Nieto, EP 1 632 468 (2006).
[4] G.Y. Tian, D.H. Xia, F.T. Zhan, Energy Fuels 18 (2004) 49.
[5] R.S. Chandran, W.T. Ford, J. Chem. Soc. Chem. Commun. (1988) 104.
[6] R.S. Chandran, S. Srinivasan, W.T. Ford, Langmuir 5 (1989) 1061.
[7] R.A. Sheldon, J.K. Kochi, Metal-Catalyzed Oxidations of Organic Com-
pounds, Academic Press, New York, 1981.
[8] M. Nowotny, L.N. Pedersen, U. Hanefeld, T. Maschmeyer, Chem. Eur. J. 8
(2002) 3724.
[9] A. Corma, Catal. Rev. Sci. Eng. 46 (2004) 369.
[10] A.M. Lyons, M.J. Vasile, E.M. Pearce, J.V. Waszczak, Macromolecules 21
(1988) 3125.
[11] Y.E. Kirsh, V.Y. Kovner, A.I. Kokorin, K.I. Zamaraev, V.Y. Chernyak, V.A.
Kabanov, Eur. Polym. J. 10 (1974) 671.
[12] H. Nishikawa, E. Tsuchida, J. Phys. Chem. 79 (1975) 2072.
[13] H. Tadokoro, S. Nishiyama, S. Tsuruya, M. Masai, J. Catal. 138 (1992)
24.
[14] Y. Sato, Y. Souma, Catal. Surv. Jpn. 4 (2000) 65.
[15] H. Nishide, T. Minakata, E. Tsuchida, J. Mol. Catal. 15 (1982) 327.
[16] A.J. Pardey, A.D. Rojas, J.E. Yanez, P. Betancourt, C. Scott, C. Chinea,
C. Urbina, D. Moronta, C. Longo, Polyhedron 24 (2005) 511.
[17] K.H. Wu, Y.R. Wang, W.H. Hwu, Polym. Degrad. Stab. 79 (2003) 195.
[18] A.L. Santana, L.K. Noda, A.T.N. Pires, J.R. Bertolino, Polym. Test. 23
(2004) 839.
4. Conclusions
We have presented the results obtained for the liquid phase
aerobic oxidation of tetralin using two metal–organic frame-
works containing Cu2+ and Co2+ as the metallic component,
and anionic diazaheterocyclic ligands (pyrimidinolate and im-
idazolate, respectively) as the organic linkers. In both cases
we have observed high performances of the materials for the
above reaction, with good reusability, especially in the case of
Co-MOF. However, the two pure materials separately present
some disadvantages that can be overcome by preparing combi-
nations of the two catalysts. As a result of this, a compromise
between the two effects has been reached with a mixture con-
taining 10 wt% Cu-MOF and 90 wt% Co-MOF, that yields the
best performance in terms of activity, selectivity and low level
of hydroperoxides.
[19] H. Nishide, E. Tsuchida, J. Polym. Sci. A 19 (1981) 835.
[20] A.I. Kokorin, K.I. Zamaraev, V.Y. Kovner, Y.E. Kirsh, V.A. Kabanov, Eur.
Polym. J. 11 (1975) 719.
[21] O.M. Yaghi, H.L. Li, J. Am. Chem. Soc. 117 (1995) 10401.
[22] G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, Acc. Chem. Res. 38
(2005) 217.
[23] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43 (2004) 2334.
[24] A. Corma, J. Catal. 216 (2003) 298.
[25] L. Alaerts, E. Seguin, H. Poelman, F. Thibault-Starzyk, P.A. Jacobs, D.E.
De Vos, Chem. Eur. J. 12 (2006) 7353.
[26] S.H. Cho, B.Q. Ma, S.T. Nguyen, J.T. Hupp, T.E. Albrecht-Schmitt, Chem.
Commun. (2006) 2563.
[27] B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M.A. Monge, C. Ruiz-
Valero, N. Snejko, Chem. Mater. 17 (2005) 2568.
[28] F.X. Llabrés i Xamena, A. Abad, A. Corma, H. Garcia, J. Catal. 250 (2007)
294.
[29] J.A.R. Navarro, E. Barea, J.M. Salas, N. Masciocchi, S. Galli, A. Sironi,
C.O. Ania, J.B. Parra, Inorg. Chem. 45 (2006) 2397.
[30] L.C. Tabares, J.A.R. Navarro, J.M. Salas, J. Am. Chem. Soc. 123 (2001)
383.
[31] N. Masciocchi, G.A. Ardizzoia, G. LaMonica, A. Maspero, A. Sironi, Eur.
J. Inorg. Chem. (2000) 2507.
[32] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K.
Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. 103 (2006) 10186.
[33] M.M. Fares, M. El-Khateeb, K.J. Asali, J. Inorg. Organomet. Polym. 13
(2003) 143.
[34] The method of hot filtration consists in running a catalytic reaction for a
given period of time, without reaching maximum conversion. At this point,
the catalyst is filtered from the reaction medium at the reaction tempera-
ture, and the time evolution of the products in the filtrate is followed, so as
to ascertain whether in the absence of the catalyst further transformations
still take place.
Acknowledgments
The authors thank the Dirección General de Investigación
Científica y Técnica of Spain (project MAT2006-14274-C02-
01) and the Universidad Politécnica de Valencia (project PAID-
06-06-4726) for funding. The Ministerio de Educación y Cien-
cia of Spain is gratefully acknowledged for a “Ramón y Cajal”
research contract to FXLX. O.C. thanks the Consejo Superior
de Investigaciones Científicas for an I3P fellowship.
Supplementary material
The online version of this article contains additional supple-
mentary material.
[35] I.W. Davies, L. Matty, D.L. Hughes, P.J. Reider, J. Am. Chem. Soc. 123
(2001) 10139.
[36] B.H. Lipshutz, S. Tasler, W. Chrisman, B. Spliethoff, B. Tesche, J. Org.
Chem. 68 (2002) 1177.
[37] N.T.S. Phan, M. Van Der Sluys, C.W. Jones, Adv. Synt. Catal. 348 (2006)
609.
References
[1] B. Moden, L. Oliviero, J. Dakka, J.G. Santiesteban, E. Iglesia, J. Phys.
Chem. B 108 (2004) 5552.
[38] I. Hermans, J. Peeters, P.A. Jacobs, J. Org. Chem. 72 (2007) 3057.