2396
B. Reichart et al.
LETTER
(5) Aljbour, S.; Yamada, H.; Tagawa, T. Chem. Eng. Process.
2009, 48, 1167.
(6) Aljbour, S.; Yamada, H.; Tagawa, T. Top. Catal. 2010, 53,
694.
(7) (a) Herriot, A. W.; Picker, D. J. Am. Chem. Soc. 1975, 97,
2345. (b) Reeves, W. P.; Bothwell, T. C.; Rudis, J. A.;
McClusky, J. V. Synth. Commun. 1982, 12, 1071.
(c) Waghmode, T. W.; Pathre, G. S.; Pai, N. R. J. Chem.
Pharm. Res. 2012, 4, 1589.
(15) (a) Damm, M.; Gutmann, B.; Kappe, C. O. ChemSusChem
2013, 6, 978. (b) Hessel, V.; Kralisch, D.; Kockmann, N.;
Noël, T.; Wang, Q. ChemSusChem 2013, 6, 746.
(16) Kockmann, N.; Roberge, D. M. Chem. Eng. Process. 2011,
50, 1017.
(17) For information about the Syrris Asia system, see:
(18) For a recent review, see: Glasnov, T. N.; Kappe, C. O. Chem.
Eur. J. 2011, 17, 11956.
(8) (a) Denmark, S. E.; Weintraub, R. C.; Gould, N. D. J. Am.
Chem. Soc. 2012, 134, 13415. (b) Yadav, G. D.; Badure, O.
V. Clean Technol. Environ. Policy 2009, 11, 163. (c) Yadav,
G. D.; Desai, N. M. J. Mol. Catal. A: Chem. 2006, 243, 278.
(d) Yadav, G. D.; Lande, S. V. Appl. Catal. A: Gen. 2005,
287, 267. (e) Herriot, A. W.; Picker, D. Tetrahedron Lett.
1972, 4521. (f) Yadav, G. D.; Bisht, P. M. J. Mol. Catal. A:
Chem. 2004, 223, 93.
(9) (a) Wirth, T. In Microreactors in Organic Chemistry and
Catalysis; Wiley-VCH: Weinheim, 2013. (b) Kockmann, N.
In Transport Phenomena in Micro Process Engineering;
Springer: Berlin/Heidelberg, 2008. (c) Hessel, V.; Renken,
A.; Schouten, J. C.; Yoshida, J. In Micro Process
Engineering; Wiley-VCH: Weinheim, 2009. (d) Wiles, C.;
Watts, P. In Micro Reaction Technology in Organic
Synthesis; CRC Press: Boca Raton, 2011.
(10) Ueno, M.; Hisamoto, H.; Kitamori, T.; Kobayashi, S. Chem.
Commun. 2003, 8, 936.
(11) de Bellefon, C.; Tanchoux, N.; Caravielhes, S.; Grenouillet,
P.; Hessel, V. Angew. Chem. Int. Ed. 2010, 39, 3442.
(12) Ahmed, B.; Barrow, D.; Wirth, T. Adv. Synth. Catal. 2006,
348, 1043.
(13) Reichart, B.; Tekautz, G.; Kappe, C. O. Org. Process Res.
Dev. 2013, 17, 152.
(14) For information about the Biotage Initiator, see:
(19) Synthesis of 1,3,5-Trimethyl-2-[(phenylmethyl)thio]-
benzene:
A: Batch Microwave Conditions: Into a 5-mL microwave
Pyrex process vial equipped with a magnetic stir bar organic
stock solution A (2 mL; 0.2 M 2,4,6-trimethylthiophenol and
0.24 M benzyl bromide in CH2Cl2) and aq stock solution D
[2 mL; 0.6 M K2CO3 and 0–2 mM (0–1 mol%) TBAB] were
placed. The vial was sealed with a Teflon septum fitted in an
aluminum crimp top and heated in the microwave reactor for
1–10 min (fixed hold time) at 70–100 °C (3–18 bar). After
cooling to 45 °C, the reaction mixture was immediately
quenched with 2 M aq HCl to reach pH <2. After 2 min of
vigorous stirring the aqueous phase was separated via
syringe and 10 μL aliquots of the organic phase were
subjected to HPLC analysis (λ = 215 nm). 1,3,5-Trimethyl-
2-[(phenylmethyl)thio]benzene was isolated by phase
separation from the basic aqueous phase, followed by H2O
extraction (3 ×). The obtained organic phases were
combined, dried over MgSO4, filtrated and concentrated
under vacuum to provide the S-benzyl ether (88 mg, 91%
yield, yellowish plates); mp 35–36 °C (lit.3: mp 36 °C). MS
(APCI, –): m/z = 242.1 [M+], 241.1 [M+ – 1], 151.1 [M+ –
91]. 1H NMR (300 MHz, CDCl3): δ = 2.28 (s, 3 H), 2.37 (s,
6 H), 3.78 (s, 2 H), 6.92 (s, 2 H), 7.08–7.11 (m, 2 H), 7.22–
7.25 (m, 3 H).
B: Continuous Flow Conditions: For details please see the
provided Supporting Information.
Synlett 2013, 24, 2393–2396
© Georg Thieme Verlag Stuttgart · New York