JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
electronic structure and optical behavior upon oxidation.
UV–vis–NIR absorbance curves correlated to applied poten-
tials of the Poly-5 and Poly-5-MeO films are presented in
Figure 7(a,b), respectively. In the neutral state, Poly-5 exhib-
ited strong absorption at wavelength 312 and 359 nm, char-
acteristic for p–p* transition band of the polymer, but it was
almost transparent in the visible region and NIR regions.
Upon oxidation (increasing applied voltage from 0.00 to 1.00
V), the absorption of p–p* transition at 359 nm gradually
decreased while two new absorption peaks at 446 and
ACKNOWLEDGMENT
The authors thank the Ministry of Science and Technology of
Taiwan for the financial support.
REFERENCES AND NOTES
1
P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electro-
chromism and Electrochromic Devices; Cambridge University
Press: Cambridge, UK, 2007.
2
(a) R. Baetens, B. P. Jelle, A. Gustavsen, Sol. Energy Mater.
7
42 nm and a broadband from 900 nm extended to the NIR
Sol. Cells 2010, 94, 872105; (b) C. G. Granqvist, Thin Solid
Films 2014, 564, 1238.
region grew up. We attribute this spectral change to the for-
mation of polarons of Poly-5 caused by the first oxidation of
the possible TPB, biscarbazole, and TPA-carbazole units. The
absorption band in the NIR region may be attributed to an
intervalance charge transfer (IVCT) between states in which
the positive charge is centered at different amino centers
3 (a) C. Ma, M. Taya, C. Xu, Polym. Eng. Sci. 2008, 48,
222422228; (b) A. M. Osterholm, D. E. Shen, J. A. Kerszulis, R.
H. Bulloch, M. Kuepfert, A. L. Dyer, J. R. Reynolds, ACS Appl.
Mater. Interfaces 2015, 7, 141321421.
4
(a) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Displays 2006,
2
7, 2218; (b) P. M. Beaujuge, S. Ellinger, J. R. Reynolds, Nat.
(
TPB, biscarbazole, or TPA-carbazole). The IVCT phenomenon
Mater. 2008, 7, 7952799.
of the family of triarylamines with multiple amino centers
5
S. Beaupre, A. C. Breton, J. Dumas, M. Leclerc. Chem. Mater.
2
5
has been reported in literature. During the first oxidation
process the color of the polymer film changed from colorless
to pale orange. When the applied potential was increased
stepwise to 1.20 V, the absorption band at 446 nm decreased
gradually and the absorption band at 742 nm increased in
intensity. The spectral change can be attributed to the forma-
tion of bipolarons of the polymer (Scheme 2). Apparent color
changes (from pale orange, via green, to blue) could be
observed during the second oxidation process. The observed
spectral changes of the Poly-5 film were fully reversible
upon varying the applied potential. Upon oxidation, the Poly-
6
7
7
(a) D. R. Rosseinsky, R. J. Mortimer, Adv. Mater. 2001, 13,
832793; (b) F. S. Han, M. Higuchi, D. G. Kurth, J. Am. Chem.
Soc. 2008, 130, 207322081; (c) A. Maier, A. R. Rabindranath, B.
Tieke, Adv. Mater. 2009, 21, 9562963; (d) A. Patra, M.
Bendikov, J. Mater. Chem. 2010, 20, 4222433; (e) D. T. Gillapie,
R. C. Tenent, A. C. Dillon, J. Mater. Chem. 2010, 20,
9
2
58529592; (f) R. J. Mortimer, Annu. Rev. Mater. Res. 2011, 41,
412268. (g) M. I. Ozkut, S. Atak, A. M. Onal, A. Cihaner, J.
Mater. Chem. 2011, 21, 526825272; (h) C.-J. Yao, Y.-W. Zhong,
J. N. Yao, Inorg. Chem. 2013, 52, 10000210008; (i) E. Karabiyik,
E. Sefer, F. Baycan Koyuncu, M. Tonga, E. Ozdemir, S.
Koyuncu, Macromolecules 2014, 47, 857828584.
5-MeO film showed similar spectral changes. However, the
fully oxidized form of this polymer revealed a strong absorp-
tion at 724 nm while a decreased absorption intensity in the
NIR region. The decrease in NIR absorption may be
explained by the lack of biscarbazole units in this polymer.
The bathochromic shift in the visible and NIR ranges may
indicate that a more stable charged moiety is present in the
8 (a) P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110,
2
682320; (b) C. M. Amb, A. L. Dyer, J. R. Reynolds, Chem.
Mater. 2011, 23, 3942415; (c) A. L. Dyer, E. J. Thompson, J. R.
Reynolds, ACS Appl. Mater. Interfaces 2011, 3, 178721795; (d)
G. Gunbas, L. Toppare, Chem. Commun. 2012, 48, 108321101;
(
e) J. Jensen, M. Hosel, A. L. Dyer, F. C. Krebs, Adv. Funct.
21
film structure of Poly-5
due to the planar biscarbazole
Mater. 2015, 25, 207322090.
unit.
9 (a) Y. Shirota, J. Mater. Chem. 2000, 10, 1–25; (b) Z. J. Ning,
H. Tian, Chem. Commun. 2009, 5483–5495; (c) M. Liang, J.
Chen, Chem. Soc. Rev. 2013, 42, 3453–3488.
CONCLUSIONS
1
0 (a) Y. Shirota, J. Mater. Chem. 2005, 15, 75–93; (b) Y.
Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953–1010.
1 (a) M. Thelakkat, Macromol. Mater. Eng. 2002, 287, 442–461;
b) A. Iwan, D. Sek, Prog. Polym. Sci. 2011, 36, 1277–1325.
2 T. Janoschka, M. D. Hager, U. S. Schubert. Adv. Mater.
2012, 24, 6397–6409.
3 J. K. Feng, Y. L. Cao, X. P. Ai, H. X. Yang. J. Power Sources
Two star-shaped monomers 5 and 5-MeO were synthesized
and characterized. These two monomers are electrochemi-
cally active and can be electropolymerized into robust poly-
mer films on the electrode surface via electrochemical
oxidative coupling of arylamino groups. The electrodeposited
polymer films showed moderate blue fluorescence and
exhibited reversible electrochemical oxidation processes in
the potential range of 0–1.4 V. Both films showed multielec-
trochromic behavior, exhibiting almost transparent colorless,
pale orange and blue colors, according to their oxidation
state. The polymer film from monomer 5 reveals an
enhanced NIR absorption at its oxidized state as compared
to the corresponding one from monomer 5-MeO. This work
provides a model to design star-shaped monomers capable
to form electrochemically active polymers with potential
applications in electronic and optoelectronic devices.
1
(
1
1
2008, 177, 199–204.
14 M. Yao, H. Senoh, T. Sakai, T. Kiyobayashi. J. Power Sour-
ces 2012, 202, 364–368.
15 (a) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Macromo-
lecules 2005, 38, 307–316; (b) C.-W. Chang, G.-S. Liou, S.-H.
Hsiao, J. Mater. Chem. 2007, 17, 1007–1015; (c) S.-H. Hsiao, G.-
S. Liou, Y.-C. Kung, H.-J. Yen, Macromolecules 2008, 41, 2800–
2
808; (d) S.-H. Hsiao, G.-S. Liou, H.-M. Wang, J. Polym. Sci.
Part A: Polym. Chem. 2009, 47, 2330–2343; (e) Y.-C. Kung, S.-H.
Hsiao, J. Mater. Chem. 2010, 20, 5481–5492; (f) Y.-C. Kung, S.-
H. Hsiao, J. Mater. Chem. 2011, 21, 1746–1754; (g) H.-J. Yen,
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2016, 00, 000–000
9