Organic Letters
Letter
provides the straightforward APEX route via Pd-catalytic relay
involving 2-fold C−H arylation in the absence of a chelating
moiety, which efficiently circumvented lengthy multistep
reactions. Furthermore, we demonstrate the discrimination
and identification of inseparable regioisomers using a gas-phase
analytical approach based on IM-MS and molecular-ion IR
spectroscopy.
(8) Per
́
ez, D.; Guitian
́
, E. Selected Strategies for the Synthesis of
Triphenylenes. Chem. Soc. Rev. 2004, 33, 274−283.
(
9) Zhang, F.; Spring, D. R. Arene C−H Functionalisation Using a
Removable/Modifiable or a Traceless Directing Group Strategy.
Chem. Soc. Rev. 2014, 43, 6906−6919.
10) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-Catalyzed
Decarboxylative C−H Functionalization. Chem. Rev. 2017, 117,
864−8907.
11) Zhang, Y.; Zhao, H.; Zhang, M.; Su, W. Carboxylic Acids as
(
8
(
ASSOCIATED CONTENT
Supporting Information
■
Traceless Directing Groups for the Rhodium(III)-Catalyzed Decar-
*
S
boxylative C−H Arylation of Thiophenes. Angew. Chem., Int. Ed.
2
(
015, 54, 3817−3821.
12) Hammer, B. A. G.; Mu
̈
llen, K. Dimensional Evolution of
Polyphenylenes: Expanding in All Directions. Chem. Rev. 2016, 116,
2
103−2140.
NMR spectroscopic data (PDF)
(13) Segawa, Y.; Ito, H.; Itami, K. Structurally Uniform and
Atomically Precise Carbon Nanostructures. Nat. Rev. Mater. 2016, 1,
1
(
5002.
14) Narita, A.; Wang, X.-Y.; Feng, X.; Mu
Nanographene Chemistry. Chem. Soc. Rev. 2015, 44, 6616−6643.
15) Feng, X.; Pisula, W.; Mullen, K. Large Polycyclic Aromatic
Hydrocarbons: Synthesis and Discotic Organization. Pure Appl. Chem.
009, 81, 2203−2224.
16) Wu, J.; Pisula, W.; Mu
for Electronics. Chem. Rev. 2007, 107, 718−747.
17) Wassmann, T.; Seitsonen, A. P.; Saitta, A. M.; Lazzeri, M.;
̈
llen, K. New Advances in
AUTHOR INFORMATION
■
*
*
*
(
̈
2
(
̈
llen, K. Graphenes as Potential Material
ORCID
(
Funding
Mauri, F. Clar’s Theory, π-Electron Distribution, and Geometry of
Graphene Nanoribbons. J. Am. Chem. Soc. 2010, 132, 3440−3451.
(
18) Ito, H.; Segawa, Y.; Murakami, K.; Itami, K. Polycyclic Arene
Synthesis by Annulative π-Extension. J. Am. Chem. Soc. 2019, 141, 3−
1
0.
(19) Ito, H.; Ozaki, K.; Itami, K. Annulative π-Extension (APEX):
Rapid Access to Fused Arenes, Heteroarenes, and Nanographenes.
Angew. Chem., Int. Ed. 2017, 56, 11144−11164.
This work was supported by the UNIST research fund
(
1.190118.01). J.S. is grateful for support from the POSCO TJ
(
20) Matsuoka, W.; Ito, H.; Itami, K. Rapid Access to Nano-
Park Science Fellowship.
graphenes and Fused Heteroaromatics by Palladium-Catalyzed
Annulative π-Extension Reaction of Unfunctionalized Aromatics
with Diiodobiaryls. Angew. Chem., Int. Ed. 2017, 56, 12224−12228.
Notes
The authors declare no competing financial interest.
(21) Ozaki, K.; Kawasumi, K.; Shibata, M.; Ito, H.; Itami, K. One-
Shot K-Region-Selective Annulative π-Extension for Nanographene
Synthesis and Functionalization. Nat. Commun. 2015, 6, 6251.
ACKNOWLEDGMENTS
We are grateful for the expert technical support from the staff
of the Fritz Haber Institute free electron laser (FHI FEL),
■
(22) Chen, H.; Mondal, A.; Wedi, P.; van Gemmeren, M. Dual
Ligand-Enabled Nondirected C−H Cyanation of Arenes. ACS Catal.
̈
especially Dr. Wieland Schollkopf and Sandy Gewinner.
2019, 9, 1979−1984.
(23) Chen, H.; Wedi, P.; Meyer, T.; Tavakoli, G.; van Gemmeren,
REFERENCES
M. Dual Ligand-Enabled Nondirected C−H Olefination of arenes.
■
Angew. Chem., Int. Ed. 2018, 57, 2497−2501.
(
1) Neufeldt, S. R.; Sanford, M. S. Controlling Site Selectivity in
Palladium-Catalyzed C−H Bond Functionalization. Acc. Chem. Res.
012, 45, 936−946.
2) Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed
C−H Bond Functionalizations: Mechanism and Scope. Chem. Rev.
011, 111, 1315−1345.
3) Ghosh, K.; Rit, R. K.; Ramesh, E.; Sahoo, A. K. Ruthenium-
Catalyzed Hydroarylation and One-Pot Twofold Unsymmetrical C-H
Functionalization of Arenes. Angew. Chem., Int. Ed. 2016, 55, 7821−
825.
4) Huang, Z.; Lumb, J.-P. Phenol-Directed C−H Functionalization.
ACS Catal. 2019, 9, 521−555.
5) Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of Extended π-
Systems through C−H Activation. Angew. Chem., Int. Ed. 2015, 54,
6−81.
6) Mathew, B. P.; Yang, H. J.; Kim, J.; Lee, J. B.; Kim, Y.-T.; Lee, S.;
(24) Wang, P.; Verma, P.; Xia, G.; Shi, J.; Qiao, J. X.; Tao, S.; Cheng,
P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung, K.-S.; Yu, J.-Q. Ligand-
Accelerated Non-Directed C−H Functionalization of Arenes. Nature
2
(
2
(
017, 551, 489−494.
́
25) Naksomboon, K.; Valderas, C.; Gom
́
ez-Martínez, M.; Alvarez-
2
(
́
Casao, Y.; Fernandez-Ibanez, M. A. S,O-Ligand-Promoted Palladium-
Catalyzed C−H Functionalization Reactions of Nondirected Arenes.
ACS Catal. 2017, 7, 6342−6346.
́
́
̃
7
(
(26) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F.
Beyond Directing Groups: Transition-Metal-Catalyzed C−H Activa-
tion of Simple Arenes. Angew. Chem., Int. Ed. 2012, 51, 10236−10254.
(27) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.;
Huang, K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. An Efficient Organo-
catalytic Method for Constructing Biaryls through Aromatic C−H
Activation. Nat. Chem. 2010, 2, 1044−1049.
(
6
(
Lee, C. Y.; Choe, W.; Myung, K.; Park, J.-U.; Hong, S. Y. An
Annulative Synthetic Strategy for Building Triphenylene Frameworks
by Multiple C−H Bond Activations. Angew. Chem., Int. Ed. 2017, 56,
(28) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.;
Wang, H.; Kwang, F. Y.; Lei, A. Organocatalysis in Cross-Coupling:
DMEDA-Catalyzed Direct C−H Arylation of Unactivated Benzene. J.
Am. Chem. Soc. 2010, 132, 16737−16740.
(29) (a) Grushin, V. V. Cyclic Diaryliodonium Ions: Old Mysteries
Solved and New Applications Envisaged. Chem. Soc. Rev. 2000, 29,
315−324. (b) Merritt, E. A.; Olofsson, B. Diaryliodonium Salts: a
5007−5011.
(
7) Pena, D.; Escudero, S.; Per
̃
́
ez, D.; Guitian
́
, E.; Castedo, L.
Efficient Palladium-Catalyzed Cyclotrimerization of Arynes: Synthesis
of Triphenylenes. Angew. Chem., Int. Ed. 1998, 37, 2659−2661.
D
Org. Lett. XXXX, XXX, XXX−XXX