Organic Letters
Letter
RB⊃BDP-CN and EtP5-RBH⊃BDP-CN were spherical
assemblies approximately 200 nm in diameter (Figure 3e and
Figure S34), which were consistent with the DLS results (Figure
Q.-Z. Chem. Soc. Rev. 2015, 44, 6143. (d) Qu, D.-H.; Wang, Q.-C.;
Zhang, Q.-W.; Ma, X.; Tian, H. Chem. Rev. 2015, 115, 7543.
(e) Escudero, D. Acc. Chem. Res. 2016, 49, 1816. (f) Li, J.; Yim, D.;
Jang, W.-D.; Yoon, J. Chem. Soc. Rev. 2017, 46, 2437. (g) Cheng, M.;
Zhang, J.; Ren, X.; Guo, S.; Xiao, T.; Hu, X.; Jiang, J.; Wang, L. Chem.
Commun. 2017, 53, 11838. (h) Wu, D.; Sedgwick, A. C.; Gunnlaugsson,
T.; Akkaya, E. U.; Yoon, J.; James, T. D. Chem. Soc. Rev. 2017, 46, 7105.
3f). As we know, in acetone, the pillar[5]arene had a good
solubility but the solubility of RB and RBH was poor. It was
speculated that EtP5-RB, EtP5-RBH, EtP5-RB⊃BDP-CN, and
EtP5-RBH⊃BDP-CN self-assembled in acetone at a higher
concentration as a result of the difference in solubility and the
π−π interactions of the moieties in the hosts or host−guest
(2) (a) Peng, H.-Q.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.;
Yang, Q.-Z. Chem. Rev. 2015, 115, 7502. (b) Liu, G.; Xu, X.; Chen, Y.;
Wu, X.; Wu, H.; Liu, Y. Chem. Commun. 2016, 52, 7966. (c) Gang-
opadhyay, M.; Maity, A.; Dey, A.; Das, A. J. Org. Chem. 2016, 81, 8977.
(d) Wu, H.; Chen, Y.; Liu, Y. Adv. Mater. 2017, 29, 1605271.
1
7
complexes. Similarly, EtP5-RBH and EtP5-RBH⊃BDP-CN
3
(3) (a) Ye, C.; Wang, J.; Wang, X.; Ding, P.; Liang, Z.; Tao, X. Phys.
respectively (Figure S35). In contrast, EtP5-RB and EtP5-
RB⊃BDP-CN could aggregate but not self-assemble in CHCl3
Chem. Chem. Phys. 2016, 18, 3430. (b) Ma, X.; Zhang, J.; Cao, J.; Yao, X.;
Cao, T.; Gong, Y.; Zhao, C.; Tian, H. Chem. Sci. 2016, 7, 4582.
(
4) Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J.
Am. Chem. Soc. 2008, 130, 5022.
5) (a) Li, Z.; Zhang, Y.; Zhang, C.; Chen, L.; Wang, C.; Tan, H.; Yu,
3
In conclusion, a novel supramolecular FRET system was
constructed via a RB functionalized pillar[5]arene-based host−
guest recognition motif. An efficient FRET process ocurred in
(
Y.; Li, X.; Yang, H. J. Am. Chem. Soc. 2014, 136, 8577. (b) Wang, Y.; Ping,
G.; Li, C. Chem. Commun. 2016, 52, 9858.
(6) (a) Cao, Y.; Hu, X.-Y.; Li, Y.; Zou, X.; Xiong, S.; Lin, C.; Shen, Y.-Z.;
Wang, L. J. Am. Chem. Soc. 2014, 136, 10762. (b) Zhou, J.; Yu, G.;
Huang, F. Chem. Soc. Rev. 2017, 46, 7021.
−5
EtP5-RBH⊃BDP-CN at 5.0 × 10 M, which could be turned
on” and “off” over several cycles upon the addition of TFA/
TEA, respectively. At a higher concentration in acetone (1.0 ×
“
−4
(7) (a) Si, W.; Chen, L.; Hu, X.; Tang, G.; Chen, Z.; Hou, J.; Li, Z.
10
M), EtP5-RB self-assembled into vesicles with the average
Angew. Chem. 2011, 123, 12772. (b) Wang, R.; Sun, Y.; Zhang, F.; Song,
M.; Tian, D.; Li, H. Angew. Chem., Int. Ed. 2017, 56, 5294.
diameter of 150 nm, while EtP5-RBH self-assembled into
nanosheets. Moreover, after the addition of BDP-CN, both of
EtP5-RB⊃BDP-CN and EtP5-RBH⊃BDP-CN self-assembled
into nanoparticles with an average diameter of 200 nm, which
caused the fluorescence emission of the host−guest complexes to
be quenched. Therefore, we developed a new pathway for
fabricating acid/base-controllable FRET and self-assembling
systems based on the host−guest recognition of EtP5-RB/EtP5-
RBH with BDP-CN. These research results will be significant for
designing novel molecular sensors and devices.
(
8) (a) Jie, K.; Liu, M.; Zhou, Y.; Little, M. A.; Bonakala, S.; Chong, S.
Y.; Stephenson, A.; Chen, L.; Huang, F.; Cooper, A. I. J. Am. Chem. Soc.
017, 139, 2908. (b) Ogoshi, T.; Shimada, Y.; Sakata, Y.; Akine, S.;
Yamagishi, T. J. Am. Chem. Soc. 2017, 139, 5664.
9) Shi, B.; Jie, K.; Zhou, Y.; Zhou, J.; Xia, D.; Huang, F. J. Am. Chem.
2
(
Soc. 2016, 138, 80.
(10) Yu, G.; Yu, W.; Mao, Z.; Gao, C.; Huang, F. Small 2015, 11, 919.
(11) (a) Wang, K.; Wang, C.; Zhang, Y.; Zhang, S. X.; Yang, B.; Yang,
Y. Chem. Commun. 2014, 50, 9458. (b) Hua, B.; Shao, L.; Zhang, Z.; Sun,
J.; Yang, J. Sens. Actuators, B 2018, 255, 1430.
(
12) (a) Ogoshi, T.; Yamafuji, D.; Yamagishi, T.; Brouwer, A. M. Chem.
ASSOCIATED CONTENT
Supporting Information
■
Commun. 2013, 49, 5468. (b) Meng, L.-B.; Li, D.; Xiong, S.; Hu, X.-Y.;
Wang, L.; Li, G. Chem. Commun. 2015, 51, 4643. (c) Fan, C.; Wu, W.;
Chruma, J. J.; Zhao, J.; Yang, C. J. Am. Chem. Soc. 2016, 138, 15405.
(13) (a) Cheng, H.-B.; Zhang, H.-Y.; Liu, Y. J. Am. Chem. Soc. 2013,
*
S
1
35, 10190. (b) Cui, X.; Zhao, J.; Zhou, Y.; Ma, J.; Zhao, Y. J. Am. Chem.
Soc. 2014, 136, 9256. (c) Fredrich, S.; Gostl, R.; Herder, M.; Grubert, L.;
Hecht, S. Angew. Chem., Int. Ed. 2016, 55, 1208.
14) (a) Yuan, L.; Lin, W.; Chen, B.; Xie, Y. Org. Lett. 2012, 14, 432.
Syntheses, NMR data, MALDI-TOF MS spectra, 2D
NOESY NMR data, UV−vis absorption spectra, fluo-
̈
(
(
(
b) Fan, J.; Hu, M.; Zhan, P.; Peng, X. Chem. Soc. Rev. 2013, 42, 29.
c) Cui, X.; Zhao, J.; Lou, Z.; Li, S.; Wu, H.; Han, K. J. Org. Chem. 2015,
AUTHOR INFORMATION
80, 568. (d) Chen, H.; Dong, B.; Tang, Y.; Lin, W. Acc. Chem. Res. 2017,
0, 1410.
15) Xia, D.; Wang, P.; Shi, B. Org. Lett. 2017, 19, 202.
(16) Li, C.; Han, K.; Li, J.; Zhang, Y.; Chen, W.; Yu, Y.; Jia, X. Chem. -
Eur. J. 2013, 19, 11892.
(17) Zhang, H.; Ma, X.; Guo, J.; Nguyen, K. T.; Zhang, Q.; Wang, X.-J.;
Yan, H.; Zhu, L.; Zhao, Y. RSC Adv. 2013, 3, 368.
■
*
*
*
5
(
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Fundamental Research Funds
for the Central Universities and China Postdoctoral Science
Foundation (2016M601928).
REFERENCES
■
(
1) (a) Ozlem, S.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 48.
b) Kowada, T.; Maeda, H.; Kikuchi, K. Chem. Soc. Rev. 2015, 44, 4953.
c) Niu, L.-Y.; Chen, Y.-Z.; Zheng, H.-R.; Wu, L.-Z.; Tung, C.-H.; Yang,
(
(
D
Org. Lett. XXXX, XXX, XXX−XXX