Organic Letters
Letter
Scheme 3. Proposed E/Z Isomerization in Solution
Mediated by a Dispirocyclobutane Intermediate
ACKNOWLEDGMENTS
■
We gratefully acknowledge the EU through the ERC Starting
Grant “COLORLANDS” and the FRS-FNRS. We thank Prof.
A. Krief (University of Namur) for the useful discussion.
REFERENCES
■
(1) (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48,
6954. (b) Beletskaya, I. P.; Cheprakov, A. V. Organometallics 2012, 31,
7753. (c) Evano, G.; Theunissen, C.; Pradal, A. Nat. Prod. Rep. 2013,
30, 1467. (d) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008,
108, 3054. (e) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. Synlett
2003, 1379. (f) Lu, T.; Hsung, R. P. ARKIVOC 2014, 127.
(2) Tracey, M. R.; Hsung, R. P.; Antoline, J.; Kurtz, K. C. M.; Shen,
L.; Slafer, B. W.; Zhang, Y. In Science of Synthesis, Houben-Weyl Methods
of Molecular Transformations; Weinreb, S. M., Ed.; Georg Thieme
Verlag KG, 2005; Chapter 21.4.
(3) (a) Kuranaga, T.; Sesoko, Y.; Inoue, M. Nat. Prod. Rep. 2014, 31,
514. (b) Shen, R.; Lin, C. T.; Bowman, E. J.; Bowman, B. J.; Porco, J.
A. Org. Lett. 2002, 4, 3103. (c) Shen, R.; Porco, J. A. Org. Lett. 2000, 2,
1333. (d) Wu, Y.; Seguil, O. R.; De Brabander, J. K. Org. Lett. 2000, 2,
4241.
displayed a vinylic proton resonance at 7.52 ppm that, upon
cooling to −40 °C, shifts and clearly splits into two peaks
centered at 7.76 and 7.29 ppm, respectively. Likely, this trend
has been observed for the vinylic proton resonances of isomers
(E)-20 and (Z)-20 (Figure SI.5). In contrast, the VT 1H NMR
spectra of all enamides bearing doubly substituted acryl (e.g., 5,
Figure SI.7) and of the Br-derived acrylate precursors (see
proton resonances. These observations promoted us to
hypothesize that the enamides bearing acryl moieties decorated
with EDGs (Me or OMe) undergo E/Z isomerization in
solution, and therefore, the products are obtained as isomeric
mixtures at rt. Likely, this could hypothetically occurs through
the formation of a dispiro cyclobutane species that serve as
intermediate of a fast dynamic equilibrium possibly involving
sequential ring-opening and ring-closure reactions (Scheme 3).
On the contrary, all enamides bearing a vinyl moiety substituted
with only EWGs are thermally stable at rt and can be
stereospecifically prepared by this procedure.
In conclusion, we have demonstrated an Ag2CO3-promoted
Pd-catalyzed alkenylation procedure providing access to acyclic
tertiary enamides starting from acryl bromides and sterically
encumbered N-substituted amides. A wide range of enamides
was synthesized, proving the versatility of the method. The
reaction likely undergoes through a stereospecific oxidative-
insertion mechanism favored by the presence of Ag2CO3. VT
1H NMR experiments showed that the enamides bearing acryl
moieties decorated with EDGs undergo E/Z isomerization in
solution. The ease of access toward trisubstituted vinylogous
imides and N-acyl amino-nitriles,21 makes this Pd-catalyzed
alkenylation method appealing to organic chemists.
́
(4) (a) Weiner, B.; Szymanski, W.; Janssen, D. B.; Minnaard, A. J.;
Feringa, B. L. Chem. Soc. Rev. 2010, 39, 1656. (b) Bode, J. W.; Fox, R.
M.; Baucom, K. D. Angew. Chem., Int. Ed. 2006, 45, 1248.
(c) Pattabiraman, V.; Bode, J. W. Nature 2011, 480, 471. (d) Courant,
T.; Dagousset, G.; Masson, G. Synthesis 2015, 47, 1799. (e) Carbery,
D. R. Org. Biomol. Chem. 2008, 6, 3455. (f) Rappoport, Z. The
Chemistry of Enamines. In The Chemistry of Functional Groups; John
Wiley and Sons: New York, 1994.
(5) Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron Lett.
1993, 34, 1479.
(6) Boeckman, R. K.; Goldstein, S. W.; Walters, M. A. J. Am. Chem.
Soc. 1988, 110, 8250.
(7) (a) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000,
2000, 397. (b) Snider, B. B.; Song, F. Org. Lett. 2000, 2, 407.
(8) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc.,
Chem. Commun. 1995, 413.
(9) Furstner, A.; Brehm, C.; Cancho-Grande, Y. Org. Lett. 2001, 3,
̈
3955.
(10) Shono, T.; Matsumura, Y.; Tsubata, K.; Sugihara, Y.; Yamane,
S.; Kanazawa, T.; Aoki, T. J. Am. Chem. Soc. 1982, 104, 6697.
(11) (a) Panda, N.; Jena, A. K.; Raghavender, M. ACS Catal. 2012, 2,
539. (b) Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973.
(12) Ogawa, T.; Kiji, T.; Hayami, K.; Suzuki, H. Chem. Lett. 1991, 20,
1443.
(13) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. S. L. Org. Lett.
2003, 5, 3667.
(14) Han, C.; Shen, R.; Su, S.; Porco, J. A. Org. Lett. 2004, 6, 27.
(15) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809.
(16) Kozawa, Y.; Mori, M. J. Org. Chem. 2003, 68, 3064.
(17) (a) Wallace, D. J.; Klauber, D. J.; Chen, C.; Volante, R. P. Org.
Lett. 2003, 5, 4749. (b) Willis, C.; Brace, G. N.; Holmes, I. P. Synthesis
2005, 3229.
(18) (a) Zhu, W.; Zhao, L.; Wang, M.-X. J. Org. Chem. 2015, 80,
12047. (b) Bai, X.-Y.; Wang, Z.-X.; Li, B.-J. Angew. Chem., Int. Ed.
2016, 55, 9007. (c) Xu, X.-M.; Zhao, L.; Zhu, J.; Wang, M.-X. Angew.
Chem., Int. Ed. 2016, 55, 3799.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(19) Wang, M.-X. Chem. Commun. 2015, 51, 6039.
(20) Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. J. Am.
Chem. Soc. 2009, 131, 16720.
(21) Nicolaou, K. C.; Mathison, C. J. N. Angew. Chem., Int. Ed. 2005,
44, 5992.
Synthetic protocols and spectroscopic data, relevant X-
ray data for molecules (E)-20 and 21, and VT H NMR
spectra of all enamides (PDF)
1
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX