J. Am. Chem. Soc. 2000, 122, 8071-8072
8071
Communications to the Editor
Sequential Intramolecular Cyclobutadiene
Cycloaddition, Ring-Opening Metathesis, and Cope
Scheme 1. Retrosynthetic Analysis of Asteriscanolide
Rearrangement: Total Syntheses of (+)- and
(-)-Asteriscanolide
John Limanto and Marc L. Snapper*
Department of Chemistry, Merkert Chemistry Center
Boston College, Chestnut Hill, Massachusetts 02467
ReceiVed June 2, 2000
The value of new transformations can become apparent when
brought to bear in complex molecule synthesis. To demonstrate
1
the utility of intramolecular cyclobutadiene cycloadditions and
As illustrated in Scheme 1, our strategy was to also prepare
the natural product through the intermediacy of cyclooctadiene
2
ring-opening metatheses, we report herein the first application
of these complementary transformations in the total syntheses of
+)- and (-)-asteriscanolide (1). The incorporation of these
reactions into the synthesis of asteriscanolide provides a nine-
step route (longest linear sequence) to the natural product. The
key synthetic disconnections are illustrated in Scheme 1.
Since its discovery more than 15 years ago, the novel
sesquiterpene lactone ring system of 1 has drawn considerable
attention from the synthetic community. In particular, successful
syntheses of asteriscanolide have been reported by the Krafft and
Paquette laboratories. Predating these more recent contributions,
however, is the first and, to date, shortest synthesis of 1, by
2; instead of using a [4 + 4] cycloaddition, however, we planned
(
to generate 2 through a Cope rearrangement on the dialkenyl-
cyclobutane 3. Precursor 3, in turn, would be prepared through a
ring-opening metathesis of the highly functionalized cyclobutene
4
and ethylene. An intramolecular Diels-Alder reaction between
3
cyclobutadiene (6) and dimethylcyclopentenol (7) would be
employed to generate compound 4.
4
Achieving the absolute stereochemistry of the natural product
was dependent upon the stereochemical identity of allylic alcohol
5
7. As illustrated in eq 1, compound 7 can be prepared in
6
Wender, Ihle, and Correia. The Wender strategy centered on a
Ni(0)-catalyzed intramolecular [4 + 4] cycloaddition of a highly
functionalized bis-1,3-diene to provide the cyclooctadiene-
containing intermediate 2. This advanced cycloadduct was then
converted to 1 in two steps. The intramolecular [4 + 4]
cycloaddition-based approach provided an asymmetric synthesis
of (+)-asteriscanolide in 13 steps from commercially available
starting materials.
nonracemic form from commercially available ketone 8. A Pd-
catalyzed Saegusa oxidation of the silyl enol ether derived from
7
ketone 8 (60% yield), followed by a (S)-B-Me-CBS-catalyzed
(
1) (a) Tallarico, J. A.; Randall, M. L.; Snapper, M. L. J. Am. Chem. Soc.
enantioselective reduction8 of the enone produces the (S)-
1
996, 118, 9196-9197. (b) Limanto, J.; Snapper, M. L. J. Org. Chem. 1998,
9
6
3, 6440-6441.
dimethylcyclopentenol 7 in 94% ee and 56% yield. While this
(
2) (a) Randall, M. L.; Tallarico, J. A.; Snapper, M. L. J. Am. Chem. Soc.
configuration of 7 lead to the natural product, employing the (R)-
CBS catalyst in the reduction delivered the antipode of 7, which
was used to prepare (-)-asteriscanolide.
Initial attempts to carry out the intramolecular Diels-Alder
between the ester-linked cyclobutadiene and dimethylcyclopen-
tenol (5 f 4) proved unsuccessful; the failure is presumably due
to the unfavorable conformational constraints of the ester
functionality. The cycloaddition became possible, however, if the
two functional groups were connected instead through an ether
linkage.
1
995, 117, 9610-9611. (b) Snapper, M. L.; Tallarico, J. A.; Randall, M. L.
J. Am. Chem. Soc. 1997, 119, 1478-1479. (c) Tallarico, J. A.; Bonitatebus,
P. J., Jr.; Snapper, M. L. J. Am. Chem. Soc. 1997, 119, 7157-7158. (d)
Tallarico, J. A.; Randall, M. L.; Snapper, M. L. Tetrahedron 1997, 53, 16511-
1
3
3
3
6520. (e) Schneider, M. F.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1996,
5, 411-412. (f) Cuny, G. D.; Cao, J.; Hauske, J. R. Tetrahedron Lett. 1997,
8, 5237-5240. (g) Cuny, G. D.; Hauske, J. R. CHEMTECH 1998, 28, 25-
1. (h) Randall, M. L.; Snapper, M. L. J. Mol. Catal. 1998, 133, 29-40.
(
3) San Feliciano, A.; Barrero, A. F.; Medarde, M.; Miguel del Corral, J.
M.; Aramburu, A.; Perales, A.; Fayos, J. Tetrahedron Lett. 1985, 26, 2369-
372.
4) (a) Sarkar, T. K.; Gangopadhyay, P.; Binay, K.; Nandy, S. K.; Fang,
2
(
J.-M. Tetrahedron Lett. 1998, 39, 8365-8366. (b) Liu, S.; Crowe, W. E.;
ACS 216th National Meeting Abstracts, American Chemical Society, Wash-
ington, DC, 1998; ORGN-235. (c) Booker-Milburn, K. I.; Cowell, J. K.; Harris,
L. J. Tetrahedron 1997, 53, 12319-12338. (d) Lange, G. L.; Organ, M. G. J.
Org. Chem. 1996, 61, 5358-5361. (e) Booker-Milburn, K. I.; Cowell, J. K.
Tetrahedron Lett. 1996, 37, 2177-2180. (f) Juliano, C. A. Thesis Dissertation,
Florida State University, 1994. (g) Booker-Milburn, K. I.; Cowell, J. K.; Harris,
L. J. Tetrahedron Lett. 1994, 35, 3883-3886. (h) Meister, P. G. Thesis
Dissertation, Ohio State University 1991. For recent reviews on the synthesis
of cyclooctanoids, see: (i) Mehta, G.; Singh, V. Chem. ReV. 1999, 99, 881-
The successful route to 1 is summarized in Scheme 2. The
iron-complexed cyclobutadiene portion (10) of the molecule can
be prepared through the photolysis of the commercially available
R-pyrone 9 in the presence of Fe(CO)
5
or by mild heating of the
Compound 11 was then
10
photolysis product with Fe
2
(CO)
9
.
(7) (a) Yoshihiko, I.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011-
1013. (b) Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zeng, D.
Tetrahedron Lett. 1995, 36, 2423-2426.
(8) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987,
109, 5551-5553. (b) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. Engl.
1988, 37, 1986-2012. (c) Deloux, L.; Srebnik, M. Chem. ReV. 1993, 93, 763-
784.
(9) Enantiomeric excess of 7 was determined by gas chromatography
analysis on Supelco’s Alpha Dex 120 fused silica capillary column.
(10) Agar, J.; Kaplan, F.; Roberts, B. W. J. Org. Chem. 1974, 39, 3451-
3452.
9
30. (j) Molander, G. A. Acc. Chem. Res. 1998, 31, 603-609.
5) (a) Cheung, Y. Y.; Krafft, M. E.; Juliano-Capucao, C. A. ACS 216th
National Meeting Abstracts, American Chemical Society, Washington, DC,
(
1
998; ORGN-238. (b) Paquette, L. A.; Tae, J.; Arrington, M. P.; Sadoun, A.
H. J. Am. Chem. Soc. 2000, 122, 2742-2748. (c) Krafft, M. E.; Juliano-
Capucao, C. A. Synthesis 2000, 0000.
(6) (a) Wender, P. A.; Ihle, N. C.; Correia, C. R. D. J. Am. Chem. Soc.
1
988, 110, 5904-5906. (b) Ihle, N. C. Thesis Dissertation, Stanford University,
1
989.
1
0.1021/ja001946b CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/04/2000