O
i
R1
R2
chromatography over silica gel (eluant 8+5+1 CH Cl –MeOH-
2
2
+
O
conc. aq. NH )† in order to remove traces of triamine starting
3
Br
O
material which had been crosslinked.
1
1
1
2
6
7
8
R
R
R
= Ac, R = Br
= Ac, R = N3
= H, R2 = N3
Here we report a novel reductive alkylation SPOS route to
unsymmetrical polyamines and their conjugates. The feasibility
of preparing unsymmetrical polyamines anchored on Wang
resin as a solid support, and then selective unmasking of amines
to reveal sites for conjugation, will find ready applications.
Furthermore, our SPOS uses of Pnt as an amine protecting
group orthogonal to Boc, and of azide reduction with PPh3
should have wide applicability in combinatorial chemistry
where libraries of amines are constructed.
We thank the Atlantic Arc for Medicinal Chemistry (GP2A),
the ARC (Association pour la Recherche sur le Cancer) and the
Ligue Nationale contre le Cancer for financial support of this
project. We acknowledge S. Sinbandhit and M. Le Roch
(Université de Rennes 1) and A. J. Geall (University of Bath) for
useful discussions and their input into these studies.
ii
2
iii
iv
H
N3
N3
O
9
O
O
v
Cl
10
O
vi
HO
NH2
HO
N
H
11
Notes and references
vii
†
Each acridine conjugate 1–3 was homogeneous by TLC (silica gel, eluant
CH Cl –MeOH–conc. aq. NH
mm Supelcosil ABZ + plus column eluting with 70+30 0.1% aq. TFA–
MeCN, UV detection at 256 nm. Unoptimised yields were typically 5% over
2
2
3
(8+5+1) and reverse-phase HPLC using a 5
H
O
O
N
H
6
steps.
12
1
I. S. Blagbrough, S. Carrington and A. J. Geall, Pharm. Sci., 1997, 3,
Scheme 1 Reagents and conditions: i, ZnBr, reflux; ii, NaN
M aq. NaOH, MeOH; iv, (COCl) , DMSO, Et N, CH Cl
cat. NaI, DMSO, 50 °C; vi, Pnt
3
, DMSO; iii, 2
2
23 and references cited therein.
S. Carrington, A. H. Fairlamb and I. S. Blagbrough, Chem. Commun.,
998, 2335 and references cited therein.
2
3
2
2 3
(Swern); v, NaN ,
2
3
2
O, CH
2
Cl
2
; vii, PDC, CH
2
Cl
2
.
1
I. S. Blagbrough, S. Taylor, M. L. Carpenter, V. Novoselskiy, T.
Shamma and I. S. Haworth, Chem. Commun., 1998, 929 and references
cited therein.
O
O
N
H
N
NH2
4
J. Chao, N. Seiler, J. Renault, K. Kashiwagi, T. Masuko, K. Igarashi and
K. Williams, Mol. Pharmacol., 1997, 51, 861.
Boc
reductive
alkylation
13
5 P. Durand, P. Richard and P. Renaut, J. Org. Chem., 1998, 63, 9723 and
references cited therein.
i
6
M. C. O’Sullivan, Q. Zhou, Z. Li, T. B. Durham, D. Rattendi, S. Lane
and C. J. Bacchi, Bioorg. Med. Chem., 1997, 5, 2145.
O
X
R1
7 S. K. Choi, K. Nakanishi and P. N. R. Usherwood, Tetrahedron, 1993,
9, 5777; D. W. Huang, H. Jiang, K. Nakanishi and P. N. R. Usherwood,
O
N
H
N
N
H
4
Boc
Tetrahedron, 1997, 53, 12391.
8
B. T. Golding, A. Mitchinson, W. Clegg, M. R. J. Elsegood and R. J.
Griffin, J. Chem. Soc., Perkin Trans. 1, 1999, 349.
1
1
1
4 X = CH2CH2, R1 = N3
5 X = CHMeCH2, R1 = N3
6 X = CH2, R1 = NHPnt
ii
9 I. R. Marsh, H. Smith and M. Bradley, Chem. Commun., 1996, 941;
I. R. Marsh, H. K. Smith, C. LeBlanc and M. Bradley, Mol. Diversity,
O
1
997, 2, 165; I. R. Marsh and M. Bradley, Tetrahedron, 1997, 53,
X
17317; P. Page, S. Burrage, L. Baldock and M. Bradley, Bioorg. Med.
Chem. Lett., 1998, 8, 1751.
10 A. Nefzi, C. Dooley, J. M. Ostresh and R. A. Houghten, Bioorg. Med.
Chem. Lett., 1998, 8, 2273; A. Nefzi, J. M. Ostresh and R. A. Houghten,
Tetrahedron, 1999, 55, 335.
O
N
H
N
N
R1
Boc
Boc
1
1 B. W. Bycroft, W. C. Chan, N. D. Hone, S. Millington and I. A. Nash,
J. Am. Chem. Soc., 1994, 116, 7415; I. A. Nash, B. W. Bycroft and W. C.
Chan, Tetrahedron Lett., 1996, 37, 2625.
ii
1
7 X = CH2CH2, R1 = N3
20 X = CH2CH2, R1 = NH2
iii
iv
1
1
1
8 X = CHMeCH2, R = N3
1
21 X = CHMeCH2, R = NH2
9 X = CH2, R1 = NHPnt
1
22 X = CH2, R = NH2
1
2 G. Byk, M. Frederic and D. Scherman, Tetrahedron Lett., 1997, 38,
3
219; G. Byk, C. Dubertret, V. Escriou, M. Frederic, G. Jaslin, R.
Scheme 2 Reagents and conditions: i, aldehyde or ketone, BAP, 3+1 DMF-
EtOH; ii, Boc O, CH Cl ; iii, PPh , H O, THF; iv, I , 1+1 H O–THF.
Rangara, B. Pitard, J. Crouzet, P. Wils, B. Schwartz and D. Scherman,
J. Med. Chem., 1998, 41, 224.
2
2
2
3
2
2
2
1
3 S. Tomasi, M. Le Roch, J. Renault, J.-C. Corbel, P. Uriac, B. Carboni,
D. Moncoq, B. Martin and J.-G. Delcros, Bioorg. Med. Chem. Lett.,
1998, 8, 635.
1
8 h) to convert the azide into a primary amine, which has
5,19
previously been reported only for solution-phase synthesis,
and this newly formed amine was then N-dansylated. Cleavage
from the resin yielded didansylated polyamine 5 as a white solid
in 35% yield over the six steps (resin loading, reductive
alkylation, dansylation, azide reduction, dansylation and resin
14 B. Carboni, M. Vaultier and R. Carrie, Tetrahedron, 1987, 43, 1799.
15 R. Madsen, C. Roberts and B. Fraser-Reid, J. Org. Chem., 1995, 60,
7
920.
6 D. M. Dixit and C. C. Leznoff, J. Chem. Soc., Chem. Commun., 1977,
98.
7 G. C. Look, C. P. Holmes, J. P. Chinn and M. A. Gallop, J. Org. Chem.,
994, 59, 7588.
8 N. M. Kahn, V. Arumugam and S. Balasubramanian, Tetrahedron Lett.,
996, 37, 4819; E. E. Swayze, Tetrahedron Lett., 1997, 38, 8465 and
8643.
1
1
1
7
cleavage). Resins 17 and 18 were similarly reacted with PPh
to afford resin-bound primary amines 20 and 21 respectively.
3
1
The Pnt group has been used to protect a variety of substituted
15
amines including amino sugars in solution phase, and
1
nucleotides in SPOS.20 The primary amine protected by a Pnt
group in resin 19 was unmasked by treatment with I
2
and water
19 B. Carboni, A. Benalil and M. Vaultier, J. Org. Chem., 1993, 58,
O–THF, 25 ºC, 18 h) affording resin 22.1
5,20
Resin-
(
1+1 H
2
3736.
2
0 R. P. Iyer, D. Yu, N. H. Ho, T. Devlin and S. Agrawal, J. Org. Chem.,
1995, 60, 8132; I. Habus, J. Xie, R. P. Iyer, W.-Q. Zhou, L. X. Shen and
S. Agrawal, Bioconjugate Chem., 1998, 9, 283.
bound amines 20–22 were acylated using acridine-9-carboxylic
1
acid activated with N -hydroxybenzotriazole (DMF, 2 3 15 h).
The resulting acylated resins were cleaved affording targets 1–3
as their free bases after final purification by flash column
Communication 9/04023D
1342
Chem. Commun., 1999, 1341–1342