Organometallics
Article
Chart 2. Structures of Ruthenium−Methylidene (left) and
Ruthenium−Alkylidene (right) as the Propagating Species in
RCM and ROMP, Respectively
ACKNOWLEDGMENTS
■
The authors thank R. Groote for fruitful discussions. This work
was supported by grants from Netherlands Organization for
Scientific Research (NWO) and Dutch IOP Self Healing
Materials (project SHM08748)
REFERENCES
(1) Grubbs, R. H. Chem. Sci. 2007, Aug 20.
■
(2) Monsaert, S.; Vila, A. L.; Drozdzak, R.; Van der Voort, P.;
Verpoort, F. Chem. Soc. Rev. 2009, 38, 3360−3372.
(3) Ung, T.; Hejl, A.; Grubbs, R. H.; Schrodi, Y. Organometallics
2004, 23, 5399−5401.
The batch of 1a used for ROMP has a slightly higher molecular
weight than the batch that was used in scission rate deter-
mination. Therefore, 15% activation is nicely in line with the
11% scission after 10 min of sonication calculated from scission
rate data and indicates that many, if not all, chain scission
events give rise to active catalyst species.
(4) Slugovc, C.; Perner, B.; Stelzer, F.; Mereiter, K. Organometallics
2004, 23, 3622−3626.
(5) Szadkowska, A.; Makal, A.; Wozniak, K.; Kadyrov, R.; Grela, K.
Organometallics 2009, 28, 2693−2700.
(6) Monsaert, S.; Ledoux, N.; Drozdzak, R.; Verpoort, F. J. Polym.
Sci., Part A: Polym. Chem. 2010, 48, 302−310.
Finally, the concentration of active species was used to
calculate the second-order rate constant of its reaction with
monomer. The value obtained is 35 min−1 M−1, approximately
20 times lower than for third-generation Grubbs catalyst
((H2IMes)(py)2(Cl)2RuCHPh) at 14 °C (Supporting
Information). The lower activity is most likely due to a com-
bination of steric and electronic differences between the active
species.27 These differences include the presence of a polymer
chain and one instead of two aryl groups on the NHC ligand of
catalyst 1a.
(7) Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 2038−
2039.
(8) Ben-Asuly, A.; Aharoni, A.; Diesendruck, C. E.; Vidavsky, Y.;
Goldberg, I.; Straub, B. F.; Lemcoff, N. G. Organometallics 2009, 28,
4652−4655.
(9) Beyer, M. K.; Clausen-Schaumann, H. Chem. Rev. 2005, 105,
2921−2948.
(10) Kaupp, G. CrystEngComm 2009, 11, 388−403.
(11) Nguyen, T.; Kausch, H.-H. Adv. Polym. Sci. 1992, 100, 73−182.
(12) Hickenboth, C. R.; Moore, J. S.; White, S. R.; Sottos, N. R.;
Baudry, J.; Wilson, S. R. Nature 2007, 446, 423−427.
(13) Caruso, M. M.; Davis, D. A.; Shen, Q.; Odom, S. A.; Sottos, N. R.;
White, S. R.; Moore, J. S. Chem. Rev. 2009, 109, 5755−5798.
(14) Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S.
Macromolecules 2005, 38, 8975−8978.
CONCLUSION
■
The work presented here establishes polymeric complex 1a as a
useful latent catalyst that is activated by mechanical force, as
opposed to a low molecular weight analogue 1b. GPC experi-
ments demonstrated that scission of 1a by ultrasound follows
first-order reaction kinetics, whereas for low molecular weight
analogue 1b, no scission was observed. The activated complex
is active in ring-closing metathesis for various substrates. In
these reactions, the lifetime of the active species is limited, but
it is not affected by radicals formed by ultrasound. The addition
of triphenylphosphine leads to delayed initiation, but increases
the lifetime of the active species. Lifetime is increased more
effectively by increasing substrate concentration. In contrast to
RCM, the active species in ring-opening metathesis polymer-
ization has a lifetime of several hours, opening opportunities for
catalysis in the solid state, where diffusion is low and, hence,
reaction times are longer. Data obtained with ROMP also make
it plausible that most scission events lead to an active catalyst.
However, its activity is estimated to be more than an order of
magnitude lower than for the active species formed from a
third-generation Grubbs catalyst.
(15) Encina, M. V.; Lissi, E.; Sarasua, M.; Gargallo, L.; Radic, D.
́
J. Polym. Sci.: Polym. Lett. Ed. 1980, 18, 757−760.
(16) Paulusse, J. M. J.; Sijbesma, R. P. Angew. Chem., Int. Ed. 2004,
43, 4460−4462.
(17) Karthikeyan, S.; Potisek, S. L.; Piermattei, A.; Sijbesma, R. P.
J. Am. Chem. Soc. 2008, 130, 14968−14969.
(18) Piermattei, A.; Karthikeyan, S.; Sijbesma, R. P. Nat. Chem. 2009,
1, 133−137.
(19) Tennyson, A. G.; Wiggins, K. M.; Bielawski, C. W. J. Am. Chem.
Soc. 2010, 132, 16631−16636.
(20) Wiggins, K. M.; Hudnall, T. W.; Tennyson, A. G.; Bielawski, C. W.
J. Mater. Chem. 2011, 21, 8355−8359.
(21) Wu, D. Y.; Meure, S.; Solomon, D. Prog. Polym. Sci. 2008, 33,
479−522.
(22) Ledoux, N.; Allaert, B.; Linden, A.; VanDerVoort, P.; Verpoort, F.
Organometallics 2007, 26, 1052−1056.
(23) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Weinheim,
Germany, 2003.
(24) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18−29.
(25) Grubbs, R. H. Tetrahedron 2004, 60, 7117−7140.
(26) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc.
2001, 123, 749−750.
(27) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc.
2001, 123, 6543−6554.
(28) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.;
Scholl, M.; Choi, T. L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 2546−2558.
(29) Sashuk, V.; Peeck, L. H.; Plenio, H. Chem.−Eur. J. 2010, 16,
3983−3993.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and characterization data, fitting
procedure, estimation of active catalyst concentration and
lifetime, additional catalytic tests, and control experiments. This
material is available free of charge via the Internet at http://
(30) Basedow, A.; Ebert, K. Adv. Polym. Sci. 1977, 22, 83−148.
(31) Keizer, H. M.; van Kessel, R.; Sijbesma, R. P.; Meijer, E. W.
Polymer 2003, 44, 5505−5511.
AUTHOR INFORMATION
Corresponding Author
■
(32) Ronda, J. C.; Serra, A.; Mantecon
Chem. Phys. 1994, 195, 3459−3468.
(33) L-Ho, F. F. Anal. Chem. 1973, 45, 603−605.
́ ́
, A.; Cadiz, V. Macromol.
Notes
The authors declare no competing financial interest.
2480
dx.doi.org/10.1021/om300161z | Organometallics 2012, 31, 2476−2481