6
MITTERSTEINER ET AL.
4. Silva JC, Nascimento MG. The influence of organic medium and
supports in the resolution of (R,S)‐menthol catalyzed by lipases.
J Braz Chem Soc. 2016;27:2226‐2233.
20. Ahmad AL, Low EM, Shukor SRA. Immobilization of phenylala-
nine dehydrogenase onto Eupergit CM for the synthesis of (S)‐2‐
amino‐4‐phenylbutyric acid. J Mol Catal B: Enzym. 2013;88:26‐31.
5. Boros Z, Falus P, Márkus M, et al. How the mode of Candida
antarctica lipase B immobilization affects the continuous‐flow
kinetic resolution of racemic amines at various temperatures. J
Mol Catal B: Enzym. 2013;85–86:119‐125.
21. Ujang Z, Husain WH, Seng MC, Rashid AHA. The kinetic reso-
lution of 2‐(4‐chlorophenoxy)propionic acid using Candida
rugosa lipase. Process Biochem. 2003;38:1483‐1488.
22. Ghanem A, Aboul‐Enein MN, El‐Azzouny A, El‐Behairy MF.
Lipase‐mediated enantioselective kinetic resolution of racemic
acidic drugs in non‐standard organic solvents: direct chiral liquid
chromatography monitoring and accurate determination of the
enantiomeric excesses. J Chromatogr A. 2010;1217:1063‐1074.
6. Youshko MI, Van Rantwijk F, Sheldon RA. Enantioselective
acylation of chiral amines catalysed by aminoacylase I. Tetrahe-
dron Asymmetry. 2001;12:3267‐3271.
7. Fish PV, Mackenny M, Bish G, et al. Enantioselective synthesis
of (R)‐ and (S)‐N‐Boc‐morpholine‐2‐carboxylic acids by
enzyme‐catalyzed kinetic resolution: application to the synthesis
of reboxetine analogs. Tetrahedron Lett. 2009;50:389‐391.
23. Xiaolu LW, Wang D, Xu Y, Geng Y, Cong CN. Kinetic resolution
of 2‐methylbutyric acid and its ester by esterification and hydro-
lysis with lipases. Chinese J Catal. 2009;30:951‐957.
8. Chen X, Wu Q, Zhu D. Enzymatic synthesis of chiral 2‐hydroxy
carboxylic acids. Process Biochem. 2015;50:759‐770.
24. Holmberg E, Holmquist M, Hedenström E, et al. Reaction
conditions for the resolution of 2‐methylalkanoic acids in esteri-
fication and hydrolysis with lipase from Candida cylindracea.
Appl Microbiol Biotechnol. 1991;35:572‐578.
9. Tsai SW. Enantiopreference of Candida antarctica lipase B
toward carboxylic acids: substrate models and enantioselectivity
thereof. J Mol Catal B: Enzym. 2016;127:98‐116.
25. Uemasu I, Hinze WL. Enantioselective esterification of 2‐
methylbutyric acid catalyzed via lipase immobilized in
microemulsion‐based organogels. Chirality. 1994;6:649‐653.
10. Zhang A, Amalin D, Shirali S, et al. Sex pheromone of the pink
hibiscus mealybug, Maconellicoccus hirsutus, contains an
unusual cyclobutanoid monoterpene. Proc Natl Acad Sci U S A.
2004;101:9601‐9606.
26. Velasco‐Lozano S, López‐Gallego F, Rocha‐Martin J, Guisán JM,
Favela‐Torres E. Improving enantioselectivity of lipase from
Candida rugosa by carrier‐bound and carrier‐free immobiliza-
tion. J Mol Catal B: Enzym. 2016;130:32‐39.
11. Leal WS, Bento JMS, Vilela EF, Della Lucia TMC. Female sex
pheromone of the longhorn beetle Migdolus fryanus Westwood:
N‐(2′S)‐methylbutanoyl
1994;50:853‐856.
2‐methylbutylamine.
Experientia.
27. Hoffmann I, Silva VD, Nascimento MG. Enantioselective resolu-
tion of (R,S)‐1‐phenylethanol catalyzed by lipases immobilized
in starch films. J Braz Chem Soc. 2011;22:1559‐1567.
12. Bo C, Li Y, Ke W, Quan H. Synthesis, liquid crystalline and lumi-
nescent properties of trimeric phenylenevinylene with end‐
groups of (R)‐(+)‐2‐methylbutyric acid ester. Chem Chin Lett.
2009;20:1423‐1426.
28. Mittersteiner M, Machado TM, Jesus PC, Brondani PB, Scharf
DR, Junior RW. Easy and simple SiO2 immobilization of
Lipozyme CaLB‐L: its use as a catalyst in acylation reactions and
comparison with other lipases. J Braz Chem Soc. 2017;28:1185‐1192.
13. Gandomkar S, Habibi Z, Mohammadi M, Yousefi M, Salimi S.
Enantioselective resolution of racemic ibuprofen esters using dif-
ferent lipases immobilized on epoxy‐functionalized silica.
Biocatal Agric Biotechnol. 2015;4:550‐554.
29. Nascimento MG, Silva JMR, Silva JC, Alves MM. The use of
organic solvents/ionic liquids mixtures in reactions catalyzed
by lipase from Burkholderia cepacia immobilized in different
supports. J Mol Catal B: Enzym. 2015;112:1‐8.
14. Tsai SW, Wei HJ. Enantioselective esterification of racemic
naproxen by lipases in organic solvent. Enzyme Microb Technol.
1994;16:328‐333.
30. Silva JMR, Bitencourt TB, Moreira MA, Nascimento MG. Enzy-
matic epoxidation of β‐caryophyllene using free or immobilized
lipases or mycelia from the Amazon region. J Mol Catal B:
Enzym. 2013;95:48‐54.
15. García R, García T, Martínez M, Aracil J. Kinetic modelling of
the synthesis of 2‐hydroxy‐5‐hexenyl 2‐chlorobutyrate ester by
an immobilised lipase. Biochem Eng J. 2000;5:185‐190.
31. Herbst D, Peper S, Niemeyer B. Enzyme catalysis in organic sol-
vents: influence of water content, solvent composition and
16. Jesus PC, Silva PLF, João JJ, Nascimento MG. Enantioselective
esterification of 2‐methylpentanoic acid catalised via
immobilized lipases in chrysotile and microemulsion‐based gels.
Synth Commun. 1998;28:2893‐2901.
temperature
on
Candida
rugosa
lipase
catalyzed
transesterification. J Biotechnol. 2012;162:398‐403.
32. Laane C, Boeren S, Vos K, Veeger C. Rules for optimization of
biocatalysis in organic solvents. Biotechnol Bioeng. 1987;30:81‐87.
17. Engel K. Lipase‐catalyzed enantioselective esterification of 2‐
methylalkanoic acids. Tetrahedron Asymmetry. 1991;2:165‐168.
18. García R, Renedo A, Martínez M, Aracil J. Enzymatic synthesis
of n‐octyl (+)‐2‐methylbutanoate ester from racemic (+/‐)‐2‐
methylbutanoic acid by immobilized lipase: optimization by sta-
tistical analysis. Enzyme Microb Technol. 2002;30:110‐115.
How to cite this article: Mittersteiner M,
Linshalm BL, Vieira APF, Brondani PB, Scharf DR,
de Jesus PC. Convenient enzymatic resolution of
(R,S)‐2‐methylbutyric acid catalyzed by
immobilized lipases. Chirality. 2017;1–6. https://
19. Nguyen BV, Hedenström E. Candida rugosa lipase as an
enantioselective catalyst in the esterification of methyl branched
carboxylic acids: resolution of rac‐3,7‐dimethyl‐6‐octenoic acid
(citronellic acid). Tetrahedron Asymmetry. 1999;10:1821‐1826.