LETTER
One-pot Synthesis of -Amino Phosphonates
1349
(3.0 mmol) and TMSCl (2.0 mmol) were added via a
syringe. After 10 min, trimethyl-phosphite or triethyl-
(R,S)-5 and the downfield doublet was assigned for the
minor diastereomer (R,R)-5.
phosphite (2.5 mmol) was added and the mixture was stirred
at r.t. for about 15 min. Then water (20 mL) and CH2Cl2 (20
mL) were added. The organic phase was separated, dried
over MgSO4, and the solvent was removed. Almost pure
crude product obtained. Further purification was carried out
by column chromatography on basic alumina eluting with
petroleum ether/EtOAc, if needed. All compounds were
characterized on the basis of spectroscopic data (IR, NMR,
MS) and comparison with those reported in the literature.
Caution: Although we did not have any accident while
using LiClO4, it is advisable to dry lithium perchlorate in a
fume hood using a suitable lab-shield.
In summary, we have reported that in situ prepared imines
in a concentrated ethereal solution of lithium perchlorate
can react with trimethylphosphite or triethylphosphite in
excellent yields. The procedure for the reaction is mild
and operationally simple. With enantiopure (R)-1-phenyl-
ethylamine, a mixture of two diastereomers formed with
dr from 70% to 80%.
Acknowledgement
(12) Selected spectral data. 4a: IR (KBr): 3304 cm–1 (NH).
1H NMR (CDCl3, 500 MHz): = 3.48 (d, 3 H, J = 6.1 Hz),
3.78 (d, 3 H, J = 10.7 Hz), 4.50 (br s, 1H, NH), 4.83 (d, 1 H,
J = 24.3), 6.61–6.72 (m, 3 H), 7.28–7.50 (m, 7 H). 13C NMR
(CDCl3, 125 MHz): = 53.68 (d, 2JPC = 6.6 Hz), 54.2 (d,
2JPC = 7.6 Hz), 55.6 (d, 1JPC = 150.6 Hz), 114.2, 119.2,
123.4, 129.0, 129.8 (d, JPC = 4.5 Hz), 130.2, 135.9 (d,
We are grateful to the Research Council, Ministry of Science, Rese-
arch and Technology for financial support of this research (GN
503495). We also thank ‘Volkswagen-Stiftung, Federal Republic of
Germany’ for financial support towards the purchase of equipment
and chemicals.
References
JPC = 2.5 Hz), 146.4 (d, JPC = 14.7 Hz). 4c: IR (KBr): 3314
cm–1 (NH). 1H NMR (CDCl3, 500 MHz): = 3.55 (d, 3 H,
J = 10.6 Hz), 3.78 (d, 3 H, J = 10.7), 4.83 (d, 1 H, J = 24.6
Hz), 4.85 (br s, 1 H, NH), 6.62–7.46 (m, 9 H). 13C NMR
(CDCl3, 125 MHz): = 53.70 (d, 2JPC = 6.6 Hz), 54.2 (d,
2JPC = 6.0 Hz) 55.02 (d, 1JPC = 154 Hz), 114.0, 119.1, 129.0,
129.6 (d, JPC = 8.1), 129.9, 130.2, 134.2 (d, JPC = 3.9 Hz),
146.4 (d, JPC = 15.0 Hz). 4g: IR (KBr): 3325 cm–1 (NH). 1H
NMR (CDCl3, 500 MHz): = 3.64 (d, 3 H, J = 10.7 Hz),
3.83 (3 H, J = 10.7 Hz), 4.99 (d, 1 H, J = 25.0 Hz), 5.12 (br
s, 1 H, NH), 6.62–6.73 (m, 3 H), 7.11–7.13 (m, 2 H), 7.88–
8.40 (m, 4 H). 13C NMR (CDCl3, 125 MHz): = 54.1 (d,
2JPC = 6.8 Hz), 54.6 (d, 2JPC = 5.9 Hz), 54.8 (d, 1JPC = 155.0
Hz), 114.2 (d, JPC = 11.2 Hz), 119.3 (d, JPC = 11.4 Hz),
123.2, 129.7 (d, JPC = 4.5 Hz), 130.0 (d, JPC = 11.2 Hz),
134.3 (d, JPC = 3.9 Hz), 139.9, 145.9 (d, JPC = 13.8 Hz),
148.9 (d, JPC = 2.5 Hz). 4n: IR (KBr): 3300 cm–1 (NH). 1H
NMR (CDCl3, 500 MHz): = 0.77 (t, 3 H, J = 6.9 Hz), 1.37
(t, 3 H, J = 7.0 Hz), 3.26 (m, 1 H), 3.79 (m, 1 H), 4.26 (m, 2
H), 5.01 (br s, 1 H, NH), 5.75 (d, 1 H, J = 24.1 Hz), 6.63–
6.70 (m, 3 H), 7.06–7.09 (m, 2 H), 7.45–7.93 (m, 6 H), 8.33–
8.35 (m, 1 H). 13C NMR (CDCl3, 125 MHz): = 16.3 (d,
3JPC = 2.3 Hz) 17.0 (d, 3JPC = 5.8 Hz), 51.8 (d, 1JPC = 151
Hz), 63.6 (d, 2JPC = 6.5 Hz), 63.9 (d, 2JPC = 5.8 Hz), 113.9,
114.1, 118.6, 123.4 (d, JPC = 6.6 Hz), 126.2, 126.2, 126.7,
128.8, 129.0, 129.4, 129.6 (d, JPC = 10.6 Hz), 132.0 (d,
(1) (a) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J.
M. J. Med. Chem. 1989, 32, 1652. (b) Baylis, E. K.;
Campbell, C. D.; Dingwall, J. G. J. Chem. Soc., Perkin
Trans. 1 1984, 2845. (c) Kafarski, P.; Lejczak, B.
Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63, 193.
(2) Kudzin, Z. H.; Lyzwa, P.; Luczak, J.; Andrijewski, G.
Synthesis 1997, 44.
(3) Yadav, J. S.; Reddy, B. V. S.; Madan, C. Synlett 2001, 1131.
(4) Chandrasekhar, S.; Prakash, S. J.; Jagadeshwar, V.;
Narsihmulu, Ch. Tetrahedron Lett. 2001, 42, 5561.
(5) Yadav, J. S.; Reddy, B. V. S.; Sarita Raj, K.; Bhaskar Reddy,
K.; Prasad, A. R. Synthesis 2001, 2277.
(6) (a) Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.
(b) Qian, C.; Huang, T. J. Org. Chem. 1998, 63, 4125.
(7) (a) Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42,
8211. (b) Heydari, A.; Karimian, A.; Ipaktschi, J.
Tetrahedron Lett. 1998, 39, 6729.
(8) (a) Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669.
(b) Lee, S.-G.; Park, J. H.; Kang, J.; Lee, J. K. Chem.
Commun. 2001, 1698.
(9) (a) Naimi-Jamal, M. R.; Mojtahedi, M. M.; Ipaktschi, J.;
Saidi, M. R. J. Chem. Soc., Perkin Trans. 1 1999, 3709.
(b) Saidi, M. R.; Azizi, N.; Zali-Boinee, H. Tetrahedron
2001, 57, 6829. (c) Saidi, M. R.; Azizi, N.; Naimi-Jamal, M.
R. Tetrahedron Lett. 2001, 42, 8111. (d) Mojtahedi, M. M.;
Saidi, M. R.; Shirzi, J. S.; Bolourtchian, M. Synth. Commun.
2001, 31, 3587.
(10) Naimi-Jamal, M. R.; Ipaktschi, J.; Saidi, M. R. Eur. J. Org.
Chem. 2000, 1735.
(11) General Procedure for the Preparation of -Amino
Phosphonates 4. The aldehyde (2 mmol)and 4 mL of 5 M
LiClO4 in diethyl ether were placed in a 50 mL flask under
argon and stirred for 5 min. Then a primary amine
J
PC = 5.0) 134.3, 146.6 (d, JPC = 14.5 Hz). 4u: IR (KBr):
3320 cm–1 (NH). 1H NMR (CDCl3, 500 MHz): = 1.13-2.13
(m, 10 H), 3.45(br s, NH), 3.54 (d, 6 H, J = 10.2 Hz), 6.66–
7.05 (m, 5 H). 13C NMR (CDCl3, 125 MHz): = 20.2 (d,
J
J
PC = 10.5 Hz), 25.6, 30.5, 53.3 (d, JPC = 7.7 Hz), 58.1 (d,
PC = 159.0 Hz), 118.6 (d, JPC = 10.5 Hz), 119.6 (d,
JPC = 13.2 Hz), 129.0 (d, JPC = 6.7 Hz), 146.1.
Synlett 2002, No. 8, 1347–1349 ISSN 0936-5214 © Thieme Stuttgart · New York