S-H. Kim et al.: Effects of IrO2/Pt hybrid electrodes on the crystallization and ferroelectric performances of sol-gel-derived Pb(Zr,Ti)O3
5. I.S. Chung, J.K. Lee, W.I. Lee, C.W. Chung, and S.B. Desu, in
was sufficient for improving the fatigue performance
without any degradation in the other ferroelectric prop-
erties. However, the same layer adopted on the bottom Pt
Ferroelectric Thin Films, edited by B.A. Tuttle, S.B. Desu,
R. Ramesh, and T. Shiosaki (Mater. Res. Soc. Proc. 361, Pitts-
burgh, PA, 1995), pp. 249–254.
electrode was not effective in improving the fatigue per-
formance with degradation in P–V and J–V properties
due to the dissolution of the IrO2 layer into the PZT layer
during the crystallization annealing of the PZT thin films.
Therefore, it was determined that the thermal and chemi-
cal stabilities of the oxide electrode layer are critically
important in improving the fatigue performance by
adopting the oxide electrode layer. The adoption of the
conducting oxide layer in the top electrode stack, rather
than the bottom electrode, is much more effective elimi-
nating the degradation in crystallinity, texturing, P–V,
and J–V behaviors. The thickness of the top oxide layer
could be reduced to 6 nm, which is good for high-density
integrated devices.
6. R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen,
and D.K. Fork, Appl. Phys. Lett. 63, 3592 (1993).
7. J. Cross, M. Fujiki, M. Tsukada, K. Matsuura, and S. Ontani, Jpn.
J. Appl. Phys. Lett. 38, L448 (1999).
8. S-H. Kim, C.E. Kim, and Y.J. Oh, Thin Solid Films 305, 321
(1997).
9. Y. Takahashi and J. Yamaguchi, J. Mater. Sci. 25, 3950 (1990).
10. G.J. Willems, D.J. Wouters, H.E. Maes, and R. Nouwen, Integr.
Ferroelectr. 15, 19 (1997).
11. C.J. Kim, D.S. Yoon, Z.T. Jiang, and K.S. No. J. Mater. Sci. 32,
1213 (1997).
12. H.N. Al-Shareef, K.R. Bellur, O. Auciello, and A.I. Kingon,
Ferroelectrics 152, 85 (1994).
13. C.K. Kwok and S.B. Desu, J. Mater. Res. 8(2), 339 (1993).
14. J.C. Shin, J. Park, C.S. Hwang, and H.J. Kim, J. Appl. Phys. 86,
506 (1999).
15. H.N. Al-Shareef, K.R. Bellur, O. Auciello, and A.I. Kingon, Thin
Solid Films 256, 73 (1995).
16. J.M. Longo, P.M. Raccah, and J.B. Goodenough, Mater. Res.
Bull. 4, 191 (1969).
ACKNOWLEDGMENT
This work was supported by National Research Labo-
ratories Program of the Ministry of Science and Tech-
nology of the Korean government.
17. H.N. Al-Shareef, K.D. Gifford, M.S. Ameen, S.H. Rou,
P.D. Hren, O. Auciello, and A.I. Kingon, Ceram. Trans. 25, 97
(1992).
18. G. Arlt and H. Neumann, Ferroelectrics 87, 109 (1988).
19. B.H. Park, S.J. Hyun, C.R. Moon, B.D. Choi, J. Lee, C.Y. Kim,
W. Jo, and T.W. Noh, J. Appl. Phys. 84, 4428 (1998).
20. W.L. Warren, D. Dimos, G.E. Pike, and K.V. Vanheusden, Appl.
Phys. Lett. 67, 1689 (1995).
REFERENCES
1. M. Dawber and J.F. Scott, Appl. Phys. Lett. 76, 1060 (2000);
M. Dawber and J.F. Scott, Appl. Phys. Lett. 76, 3655 (2000).
2. S-H. Kim, J.G. Hong, S.K. Streiffer, and A.I. Kingon, J. Mater.
Res. 14, 1018 (1999).
3. A. Tagantsev, Presented in the 12th International Symposium on
Integrated Ferroelectrics, Aachen, Germany, 12–15, 2000 (un-
published).
21. S-H. Kim, D-S. Lee, C.S. Hwang, D-J. Kim, and A.I. Kingon,
Appl. Phys. Lett. 77(19), 3036 (2000).
22. S-H. Kim, H-J. Woo, J. Ha, C.S. Hwang, and A.I. Kingon, Appl.
Phys. Lett. 78, 2885 (2001).
23. I. Stolichnov, A. Tagantsev, N. Setter, J. Cross, and M. Tsukada,
Appl. Phys. Lett. 74, 3552 (1999).
4. O. Auciello, K.D. Gifford, and A.I. Kingon, Appl. Phys. Lett. 64,
2873 (1994).
1742
J. Mater. Res., Vol. 17, No. 7, Jul 2002
Downloaded: 13 Mar 2015
IP address: 130.126.162.126